如图,等边三角形内一点P,AP=1,BP=2,CP=3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:27:40
因为四边形ABCD是正方形,三角形PBC是等边三角形,BC=BP=BA,所以∠PBC=60°,∠ABP=30°三角形BAP是等腰三角形,根据等腰三角形的性质得∠PAB=∠APB=(180°-30°)÷
以PA为边长作等边△PAD,连结BD∵∠PAD=60°=∠BAC∴∠BAD=∠PAC∵AD=AP,AB=AC∴△ABD≌△APC∴BD=PC=5∵PD=PA=3,PB=4∴∠BPD=90°∵∠APD=
如图将三角形APC绕点A顺时针旋转至三角形AP'B位置则三角形APC全等于三角形AP'B角P'BP=角P'BA+角ABP=角ACP+角ABP=60-角PCB+60-角P
解证:将△APB按逆时针方向旋转60°,如图:AB与AC重合,连PP’ 则△APP'为等边三角形,(∵&nbs
在BC上取点R,使BR=BP,则CR=CQ,△PBR,△QRC都是正三角形,APRQ是平行四边形,AR过PQ的中点M,且AR=2AM,APRC是等腰梯形,PC+AR=2AM=38cm.细节自己可以补充
∵∠APD=80°,AD=AP∴∠ADP=80°∴∠CDP=180°-∠ADP=180°-80°=100°∵△ABC是等边三角形∴∠C=60°∴∠DPC=180°-∠CDP-∠C=180°-100°-
做QG⊥BC,连接AF,AP与QF的交点为OAQ=AP ∠QAE=∠QAP+∠PAE=60+∠PAE ∠PAB=∠BAE+∠PAE=60+∠PAE∠QAE=∠PABAE
(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+
解题思路:(1)根据已知利用SAS判定△APC≌△BDC,从而得到PC=DC,因为AP过圆心O,AB=AC,∠BAC=60°,所以∠BAP=∠PAC=12∠BAC=30°,又知∠CPD=∠PBC+∠B
以PA为边长作等边△PAD,连结BD∵∠PAD=60°=∠BAC∴∠BAD=∠PAC∵AD=AP,AB=AC∴△ABD≌△APC∴BD=PC=5∵PD=PA=3,PB=4∴∠BPD=90°(勾股定理逆
∵ABC是正三角形∴AB=CB∵∠PBQ=60°BP=BQ∴60°-∠PBC=∠ABP60°-∠PBC=∠CBQ∴∠ABP=∠CBQ∴△ABP≌△CBQ∴AP=CQ
解题思路:将△APC绕点A顺时针旋转60°得△ADB,可以证明△APD是等边三角形则DP=AP,则△DBP就是以AP,BP,CP三边为边的三角形,然后分别求出△DBP的三个内角的度数即可解题过程:
∠APD=150度,因为△BCP是等边三角形,所以BP=BC=PC,∠PBC=∠PCB=∠BPC=60度,又因正方形ABCD,所以∠ABC=∠BCD=90度,AB=BC=CD,所以∠ABP=∠DCP=
三角形两边之和大于第三边AP+BP>ABAP+CP>ACBP+CP>BC然后上述三式加一加两边同除以2等证再问:具体怎么做?再答:∵P为△ABC内任意一点连接AP,BP,CP∴得△ABP,ACP,CB
过A作AM⊥BC交BC于M,作PN⊥AM于N,过P作KP‖AC交AB于K,过K作kQ⊥AC交AC于Q,过k作KH⊥AM交AM于H,过P作PG⊥KH交kH于G,∴PE=MN(1)由PF=KQ,∠KAH=
1)∵△ABC是等边三角形∴AB=BC=CA∵PA+PB>AB,PB+PC>BC,PC+PA>CA∴2(PA+PB+PC)>AB+BC+CA=3AB因此,PA+PB+PC>3/2AB2)∵AP+BP>
(1)∠EBF=30°,∠QFC=60°;(2)∠QFC=60°,不妨设BP>,如图1所示,∵∠BAP=∠BAE+∠EAP=60°+∠EAP,∠EAQ=∠QAP+∠EAP=60°+∠EAP,∴∠BAP
AP=CQ.证明如下:设PQ与BC相交于N∠ABP+∠PBN=60°∠CBQ+∠PBN=60°所以∠ABP=∠CBQ----------------------①又∵BA=BC------------
猜想:AP=CQ,证明:∵∠ABP+∠PBC=60°,∠QBC+∠PBC=60°,∴∠ABP=∠QBC.又AB=BC,BQ=BP,∴△ABP≌△CBQ,∴AP=CQ
连接PP',∵BP=4,∠PBP'=60°,BP'=BP=4,∴△BPP'是正三角形,于是∠BP'P=60°.又∵∠ABP+∠PBC=60°,∠CBP'+∠PBC=60°,∴∠ABP=∠CBP',又因