如图,等边三角形内一点P,AP=1,BP=2,CP=3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:27:40
如图,等边三角形内一点P,AP=1,BP=2,CP=3
如图,P为正方形ABCD内一点,且PBC为等边三角形,则PAD=

因为四边形ABCD是正方形,三角形PBC是等边三角形,BC=BP=BA,所以∠PBC=60°,∠ABP=30°三角形BAP是等腰三角形,根据等腰三角形的性质得∠PAB=∠APB=(180°-30°)÷

如图,已知三角形ABC是等边三角形,点P是三角形ABC中的任意一点,分别连接AP,BP,CP,且AP=3,BP=4,CP

以PA为边长作等边△PAD,连结BD∵∠PAD=60°=∠BAC∴∠BAD=∠PAC∵AD=AP,AB=AC∴△ABD≌△APC∴BD=PC=5∵PD=PA=3,PB=4∴∠BPD=90°∵∠APD=

如图,p为等边三角形abc内部一点,pb=2,pc=1,∠bpc=150°,求ap的长

如图将三角形APC绕点A顺时针旋转至三角形AP'B位置则三角形APC全等于三角形AP'B角P'BP=角P'BA+角ABP=角ACP+角ABP=60-角PCB+60-角P

12.如图,等边三角形ABC内有一点P,满足AP=3,BP=4,CP=5.使用旋转图形的性质,求∠APB的度数.

解证:将△APB按逆时针方向旋转60°,如图:AB与AC重合,连PP’       则△APP'为等边三角形,(∵&nbs

如图,在等边三角形ABC中,P为AB边上的一点,Q为AC边上的一点,且AP=CQ

在BC上取点R,使BR=BP,则CR=CQ,△PBR,△QRC都是正三角形,APRQ是平行四边形,AR过PQ的中点M,且AR=2AM,APRC是等腰梯形,PC+AR=2AM=38cm.细节自己可以补充

如图,点P为等边三角形,ABC的边BC上一点,且∠APD=80°,AD=AP,求∠DPC的度数

∵∠APD=80°,AD=AP∴∠ADP=80°∴∠CDP=180°-∠ADP=180°-80°=100°∵△ABC是等边三角形∴∠C=60°∴∠DPC=180°-∠CDP-∠C=180°-100°-

如图1,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连接AP,将线段AP

做QG⊥BC,连接AF,AP与QF的交点为OAQ=AP  ∠QAE=∠QAP+∠PAE=60+∠PAE ∠PAB=∠BAE+∠PAE=60+∠PAE∠QAE=∠PABAE

如图,△ABC是等边三角形,P为三角形内任意一点,边长为1.

(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+

已知:如图,等边三角形ABC内接于⊙O,点P是劣弧上的一点(端点除外),延长BP至D,使BD=AP,连接CD。 (1)若

解题思路:(1)根据已知利用SAS判定△APC≌△BDC,从而得到PC=DC,因为AP过圆心O,AB=AC,∠BAC=60°,所以∠BAP=∠PAC=12∠BAC=30°,又知∠CPD=∠PBC+∠B

如图,已知P是等边三角形ABC内一点,AP=3,BP=4,CP=5,求角APB的值

以PA为边长作等边△PAD,连结BD∵∠PAD=60°=∠BAC∴∠BAD=∠PAC∵AD=AP,AB=AC∴△ABD≌△APC∴BD=PC=5∵PD=PA=3,PB=4∴∠BPD=90°(勾股定理逆

如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边做等边三角形PBQ.试判断AP与CQ的大小关系,并说

∵ABC是正三角形∴AB=CB∵∠PBQ=60°BP=BQ∴60°-∠PBC=∠ABP60°-∠PBC=∠CBQ∴∠ABP=∠CBQ∴△ABP≌△CBQ∴AP=CQ

已知:如图,P为等边三角形ABC内的一点,角APB=113°,角APC=123° (1)以AP,BP,CP的长度可以构成

解题思路:将△APC绕点A顺时针旋转60°得△ADB,可以证明△APD是等边三角形则DP=AP,则△DBP就是以AP,BP,CP三边为边的三角形,然后分别求出△DBP的三个内角的度数即可解题过程:

如图,P是正方形ABCD内的一点,已知三角形BCP是等边三角形,那么角APD等于多少度

∠APD=150度,因为△BCP是等边三角形,所以BP=BC=PC,∠PBC=∠PCB=∠BPC=60度,又因正方形ABCD,所以∠ABC=∠BCD=90度,AB=BC=CD,所以∠ABP=∠DCP=

如图 ,P为三角形ABC内任意一点,连接AP,试说明AP+BP+CP>1/2(AB+AC+BC)

三角形两边之和大于第三边AP+BP>ABAP+CP>ACBP+CP>BC然后上述三式加一加两边同除以2等证再问:具体怎么做?再答:∵P为△ABC内任意一点连接AP,BP,CP∴得△ABP,ACP,CB

如图 一直等边三角形ABC内任意一点P到各边的距离分别为R1 R2 R3 等边三角形ABC的高位H试证明ri+r2+r3

过A作AM⊥BC交BC于M,作PN⊥AM于N,过P作KP‖AC交AB于K,过K作kQ⊥AC交AC于Q,过k作KH⊥AM交AM于H,过P作PG⊥KH交kH于G,∴PE=MN(1)由PF=KQ,∠KAH=

如图,P为等边三角形内任意一点,连接PA,PB,PC,求证:(1)PA+PB+PC>2/3AB,(2)AP+BP>PC

1)∵△ABC是等边三角形∴AB=BC=CA∵PA+PB>AB,PB+PC>BC,PC+PA>CA∴2(PA+PB+PC)>AB+BC+CA=3AB因此,PA+PB+PC>3/2AB2)∵AP+BP>

如图1,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连接AP,将线段AP绕

(1)∠EBF=30°,∠QFC=60°;(2)∠QFC=60°,不妨设BP>,如图1所示,∵∠BAP=∠BAE+∠EAP=60°+∠EAP,∠EAQ=∠QAP+∠EAP=60°+∠EAP,∴∠BAP

如图,P是等边三角形ABC内的一点,连接PA,PB,以BP为边作等边三角形PBQ.试判断AP与CQ的大小关系,并说明理

AP=CQ.证明如下:设PQ与BC相交于N∠ABP+∠PBN=60°∠CBQ+∠PBN=60°所以∠ABP=∠CBQ----------------------①又∵BA=BC------------

P是等边三角形ABC内的一点,连接PA,PB,以BP为边做等边三角形POQ,试判断AP与CQ的大小关系,并说明理由

猜想:AP=CQ,证明:∵∠ABP+∠PBC=60°,∠QBC+∠PBC=60°,∴∠ABP=∠QBC.又AB=BC,BQ=BP,∴△ABP≌△CBQ,∴AP=CQ

勾股定理的如图,P是等边三角形ABC内的一点,AP=3,BP=4,CP=5,绕着点B将点P顺时针旋转60°得点P’,联结

连接PP',∵BP=4,∠PBP'=60°,BP'=BP=4,∴△BPP'是正三角形,于是∠BP'P=60°.又∵∠ABP+∠PBC=60°,∠CBP'+∠PBC=60°,∴∠ABP=∠CBP',又因