如图,菱形abcd中,已知角bad=120,角egf=60

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 05:07:38
如图,菱形abcd中,已知角bad=120,角egf=60
已知:如图,菱形ABCD中,点E、F分别在边BC、CD上,且∠EAF=∠B,求证:AE=AF

作AM⊥BC于M,AN⊥CD于N易证AM=AN,∠MAN+∠C=180°又∠B+∠C=180°∴∠MAN=∠B=∠EAF∴∠EAM=∠FAN又AM=AN∴Rt△AEM≌Rt△AFN∴AE=AF

如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3),B(-4,0

(1)∵菱形ABCD,A(0,3),B(-4,0)∴C(-4,-5)∴经过点C的反比例函数的解析式为y=20/x(2)∵菱形ABCD,A(0,3),B(-4,0)∴D(0,-2)∴S△cod=1/2×

如图,已知菱形ABCD中角B=60度,E为AB上一点,F为AD上一点,且角CEF=60度

根据余弦定理公式,得EC²=EB²+BC²-2EB*BC*cosB即39=2²+BC²-2*2*BC*(1/2)BC²-2BC-35=0解得

已知:如图,在菱形ABCD中,E、F分别是BC、CD的中点.

(1)证明:菱形ABCD中,AB=BC=CD=AD,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF.在△ABE和△ADF中AB=AD,∠B=∠D,BE=DF,∴△ABE≌△ADF(SAS).

如图,已知在菱形ABCD中.详见补充,

因为菱形ABCD所以AC,BD互相垂直平分且平分一组对角又ON⊥AD,OM⊥BC,OE⊥AB,OF⊥DC所以ON=OM=OE=OF(角平分线性质定理)

顶点在矩形边上的菱形叫做矩形的内接菱形.如图,矩形ABCD中,已知:AB=a,BC=b(a<b)

(1)1.平行线的一个性质就能证明AB//HG2.边上的4个三角形都是全等的,内错角之和180,也能证明HG和EF的平行3.中垂线定理就能证明了(2)EF>HF,AC>EG,所以3的面积大于2,FC>

如图,四边形ABCD为菱形,已知A(0,4),B(-3,0)

(1)在直角三角形ABO中,因为AB^2=AO^2+BO^2AB^=4^2+3^2AB=5因为四边形是菱形,所以AB=AD=BC=CD因为AD=AB=5,AO=4所以OD=1D(-1,0)(2)因为四

如图,四边形ABCD为菱形,已知A(0,4),B(-3,0).

①∵四边形ABCD为菱形∴AB=AD=CD∵A(0,4);B(-3,0)∴OB=3,AO=4由勾股定理得AB=5所以AD=CD=5因为AD=4,AD=5所以OD=1所以D(0,-1)

如图,四边形ABCD为菱形,已知A(0,4),B(-3,0).

(1)∵A(0,4),B(-3,0),∴OB=3,OA=4,在Rt△AOB中,AB=OA2+OB2=5.在菱形ABCD中,AD=AB=5,∴OD=1,∴D(0,-1).(2)∵四边形ABCD是菱形,∴

已知,如图,在菱形ABCD中,∠BAD=2∠B.求证:△ABC是等边三角形

证明:∵四边形ABCD是菱形∴AD//BC(菱形对边平行)∴∠B+∠BAD=180°∵∠BAD=2∠B∴3∠B=180°∠B=60°∵AB=BC(菱形邻边相等)∴△ABC是等边三角形(有一个角是60°

已知如图,在菱形ABCD中,∠BAD=2∠B求证三角形ABC是等边三角形

人在听么?再问:什么再答: 再答:懂不懂。?再问:第四行写的是什么再答:角BAF等于二倍的角B

已知:如图,在菱形ABCD中,角BAD=2角B.求证:△ABC是等边三角形.

在菱形ABCD中AB=BC,AD∥BC∴∠BAD+∠B=180°∵∠BAD=2∠B∴∠B=180°÷(1+2)=60°∴△ABC是等边三角形

如图,已知菱形ABCD中,∠BAD:∠B=2:1,AE⊥BC于E,AE=2根号3cm求菱形的边长

因为四边形ABCD是菱形所以AD平行BC所以角B+角BAD=180度因为角BAD+角B=2:1所以角B=60度因为AE垂直BC于E所以角AEB=90度因为角AEB+角B+角BAE=180度所以角BAE

已知,如图,四边形ABCD是菱形

(1)AH=FC(AFCH是矩形),有AE=AH=CG=CF,BF=BE=HD=DG;AE=AH,∠AEH=∠AHE;BF=BE,∠BEF=∠BFE,∠B+∠BAD=180°,2∠AEH+∠BAD=1

如图,菱形ABCD中,AE垂直BC,BE=EC,求角B、∠C度数

连接AC∵BE=ECAE⊥BCAE=AE∴△ABE≌△ACE∴AB=AC∵四边形ABCD是∴AB=BC∵AB=ACAB=BC∴AB=BC=AC即△ABC是等边三角形∴∠B=60°∵菱形中对角相等∴∠B

如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)B(-4,0)

C点坐标为:(-4,-5)设经过X点的反比例函数解析式为y=k/x则:-5=-k/4求得k=5/4所以:经过点C的反比例函数的解析式为y=5/(4x)(2)设P点的横坐标为m,则P点到AO的距离为|m

如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3),B(-4,0)

只能用用高中方法OB=4,OA=3∴AB=5sin∠ABO=3/5cos∠ABO=4/5sin∠ABC=sin(∠ABO+90°)=cos∠ABO=4/5cos∠ABC=-3/5tan∠ABC=-4/

已知如图,在菱形ABCD中,初二数学,急急急!

∵AB=2,∠B=45°,AE⊥BC∴AE=BE=√2∴S△ABE=S△AB'E=1/2*√2*√2=1∵∠B'=∠OCB'=45°,BC'=2√2-2∴△B‘OC是等腰直角三角形∴S△B'OC=(√

如图,在菱形ABCD中.

AD//BE,所以△AMD∽△EMB,从而BM/DM=BE/DA;而∠BAF=∠DAE,有公共角∠EAF,所以∠BAE=∠DAF,又∠ABE=∠ADF,AB=AD,所以△ABE≌△ADF,所以BE=D