如图,菱形ABCD中,点E,F分别是BC,CD的中点,连接AE,AF,AE与AF
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 05:19:34
(1)证明:菱形ABCD中,AB=BC=CD=AD,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF.在△ABE和△ADF中AB=AD,∠B=∠D,BE=DF,∴△ABE≌△ADF(SAS).
由AB=BC=2BE(菱形邻边相等),角AEB=90度可知角BAE=30度.故角B=60度.其余三个角则可用平行四边形性质求,角D=60度,角BAD=角BCD=120度
(1)∵四边形ABCD是菱形,∴AB=BC=AD=CD,∠B=∠D,∵点E、F分别是边BC、AD的中点,∴BE=DF,在△ABE和△CDF中,∵AB=CD∠B=∠DBE=DF,∴△ABE≌△CDF(S
(1)①证明:∵四边形ABCD是菱形,∠ABC=120°∴∠ADB=∠CDB=∠ABD=∠CBD=60°AD=CD∴△ABC与△BCD是正三角形∴BD=BC∵AE=DF∴DE=CF在△BDE与△BFC
俊狼猎英团队为您解答⑴AE=AF.证明:∵ABCD是菱形,∴AB=AD,∠B=∠D,∵BE=DF,∴ΔABE≌ΔADF(SAS),∴AE=AF.⑵改为CE=CF,依然有AE=AF.∵ABCD是菱形,∴
由题可知:∠B=∠D(菱形的对角相等)AB=AD又因为∠AEB=∠AFD=90°所以三角形AEB全等于三角形AFB(角边角)所以CE=CF
(1)DE=BF.理由如下:如图,设AB、EF相交于G,连接BD,在菱形ABCD中,BD⊥AC,∵EF⊥AC,∴EG∥BD,∵E是AD中点,∴EG是△ABD的中位线,∴AG=BG,又∵AD∥BC,∴∠
证明:(1)由菱形ABCD可知:AB=AD,∠B=∠D,∵BE=DF,∴△ABE≌△ADF(SAS),∴AE=AF;(4分)(2)连接AC,∵菱形ABCD,∠B=60°,∴△ABC为等边三角形,∠BA
证明:(1)∵ABCD是菱形,∴AB=AD∠B=∠D.又∵BE=DF,∴△ABE≌△ADF.(2)∵△ABE≌△ADF,∴AE=AF,∴∠AEF=∠AFE.
话说应该是先求证:△AED≌△DFB,然后再求证△CDG≌△CBG'吧?先证明△AED≌△DFB:因为ABCD是菱形,所以AB=AD=BD=DC=BC,所以△ABD和△DCB是全等的等边三角形.所以角
证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,又∵BE=DF,∴△ABE≌△ADF,∴AE=AF;(2)连接AC,∵AE垂直平分BC,AF垂直平分CD,∴AB=AC=AD.∵AB=BC
延长AB,过F作FG⊥AB延长线于G∵正方形ABCD,AB=√2∴AD=BC=CD=AB=√2∴AC=√2×√2=2∵菱形AEFC∴AF=AC=2,BF∥AC∴∠FBG=∠CAB=45∵FG⊥AB∴B
证明:(1)因为菱形ABCD所以AB=CD,∠ABE=∠ADF又因为BE=DF所以△ABE≌△ADF(SAS)(2)因为△ABE≌△ADF所以AE=AF所以∠AEF=∠AFE
因为四边形ABCD为菱形,所以AB等于AB,CB等于CD,角ABD等于角ADC因为AE等于AF,所以BE等于DF,因为BE等于DF,CB等于CD,角ABD等于角ADC,所以三角形CBE全等于三角形CD
(1)证三角形AEM全等三角形DEF,得,AM=DF,因EM//BD,MB//DF,所以四边形FDBM是平行四边形,所以MB=DF,所以AM=MB,即M是AB中点(2)因AD=2DF=4,所以菱形AB
由题,菱形,知道AD=AB,要证明AE=AF即证BE=DF,只需要证明三角形DFC和三角形BEC全等即可.(利用A(直角)A(角DCF和角BCE等)S(CD=CB)即可证明)
这题目居然是小学题目:超难啊!连接BF、AC、AD;CF=AE;根据菱形特性;△BCF≌ABE;△BDF≌△BDE;△ABC≌△ACD;丙-甲=155;丁-乙=31则(丙+丁)-(甲+乙)=155+3
(1)AB=AD,BE=AF,∠ABE=∠ADF,所以△ABE≌△ADF所以AE=AF(2)连接AC,BD,点E.F分别为BC.CD的中点,所以EF=1/2BD,又BD=√3AB,所以EF=√3/2A
如图,∵BE+CE=BCCF+BF=BCCF=BE∴BF=CE∵四边形ABCD为菱形∴AB=CD∵在△ABF和△DCE中AF=DEBF=CEAB=DC∴△ABF≌△DCE∴∠ABF=∠DCE∵在菱形A