如图,菱形ABCD中,点e为ac上一点,且de⊥be
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 05:09:21
连接AC,BD,交与点O因为四边形ABCD是菱形,所以三角形ABC是等边三角形在Rt三角形BEC中,CE=根号3,所以BE=1,BC=2所以C◇ABCD=2+2+2+2=8在Rt三角形BCO中,BO=
根据题意,菱形ABCD中角A=120度,可知∠B=∠D=60º.连接AC,则三角形ABC为等边三角形.由题知,∵CE⊥AB,且CE=√3cm∴BC=AB=AC=2cm∴菱形ABCD的面积=2
(1)证明:连接BD,∵四边形ABCD是菱形,∠DAB=60°,∠ADC=120°,∴△ABD是正三角形.∴∠ABD=∠ADB=60°,AB=BD,又因AE+CF=4,DF+CF=4,∴AE=DF,而
(1)①证明:∵四边形ABCD是菱形,∠ABC=120°∴∠ADB=∠CDB=∠ABD=∠CBD=60°AD=CD∴△ABC与△BCD是正三角形∴BD=BC∵AE=DF∴DE=CF在△BDE与△BFC
连结BD,由AE+DE=m,AE+CF=m,得DE=CF;由菱形ABCD中,∠DAB=60°,得三角形BCD和三角形ABD都是等边三角形,所以BD=BC,从而可证得三角形BDE全等于三角形BCF,所以
连结BD,由题意可知△ABD与△BCD是全等的两个等边三角形.AE+CF=2a=CF+FD,则AE=FD,AB=BD,∠BAE=∠BDF=60°,则△ABE≌△BDF,那么BE=BF,∠ABE=∠DB
(1)连接BD∵∠DAB=60°∴△ABD是等边三角形∴AB=DB又∵AE+CF=m∴AE=DF在△ABE和△DBF中AB=BD∠A=∠BDFAE=DF∴△ABE≌△DBF(SAS)∴BE=BF,∠A
∵ABCD是菱形,∴AB=AD,∵∠DAB=60°,∴ΔABD是等边三角形,BD=AB=m=AC,∠ADB=60°=∠C,∵AE+CF=m,AE+DE=m,∴DE=CF,∴ΔBDE≌ΔBCF,∴BE=
AB=BC=4,又BE=EC,所以BE=EC=2,因为AE垂直于BC,所以BE^2+AE^2=AB^2,所以AE=2根号3,所以菱形ABCD的面积为8根号3
1.垂直,√3按照小聪的思路作完图之后,GF平行于AB平行于CD,P又是中点,角HDP=角GFP,角HPD=角GPE,P为中点,所以三角形HDP全等于三角形GFP,这样DH=GF,所以CH=CG,则有
(1)因为四边形ABCD是平行四边形所以AD=BC,(平行四边形对边平行且相等)AB=CD(第二个问题要用到的)因为CEDB是菱形所以BC=DE(菱形的四边都相等且对边平行)所以AD就=DE所以点D就
(1)证明:∵AE=PE,AF=BF,∴EF∥PB又EF⊄平面PBC,PB⊂平面PBC,故EF∥平面PBC;(2)在面ABCD内作过F作FH⊥BC于H∵PC⊥面ABCD,PC⊂面PBC∴面PBC⊥面A
再答:(*^__^*)嘻嘻……,希望能够帮得到你哦~~【如果满意我的回答的话,请采纳为满意答案哦】【并轻轻一点“赞同”~谢谢啦】-------------------【你的微笑最重要】团队~~~~~~
因为AE:BC=3:5,所以可设AE=3x,BC=5x,则AB=5x因为AE垂直BC,所以三角形ABE是直角三角形所以可得BE=4x,则CE=5X-4X=X又因为CE=1,所以X=1.AB=5X=5,
【解】延长AB,过F作FG⊥AB延长线于G∵正方形ABCD,AB=√2∴AD=BC=CD=AB=√2∴AC=√2×√2=2∵菱形AEFC∴AF=AC=2,BF∥AC∴∠FBG=∠CAB=45∵FG⊥A
延长AB,过F作FG⊥AB延长线于G∵正方形ABCD,AB=√2∴AD=BC=CD=AB=√2∴AC=√2×√2=2∵菱形AEFC∴AF=AC=2,BF∥AC∴∠FBG=∠CAB=45∵FG⊥AB∴B
由AE+CF=a;AD=AE+ED=a;CD=DF+CF=a∴AE=DF;CF=ED在菱形ABCD中,连接BD则有AB=BD=BC∵AB=BD,AE=DF∠BAE=∠BDF=60°∴△ABE≡△DBF
∵四边形ABCD是菱形,∴AB=BC=AD=6,∵AE⊥BC,∴∠AEB=90°,∵sinB=23,∴sinB=AEAB=23,∴AE=4,∴S菱形ABCD=BC•AE=6×4=24.故选C.
如图,∵BE+CE=BCCF+BF=BCCF=BE∴BF=CE∵四边形ABCD为菱形∴AB=CD∵在△ABF和△DCE中AF=DEBF=CEAB=DC∴△ABF≌△DCE∴∠ABF=∠DCE∵在菱形A
∵⊙D切AB于E,∴DE⊥AB,过D作DG⊥BC于G,∵ABCD是菱形,∴DA=DC,∠A=∠C,又∠DEA=∠DGC=90°,∴ΔDEA≌ΔDGC,∴DG=DE,∴BC与⊙D切于G;⑵∵∠A=60°