如图,在边长为a的菱形ABCD中,角DAB=60°,E是AD上的动点,F是CD上的动点,满足AE+CF=a,说明;不论E
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/10 01:17:04
如图,在边长为a的菱形ABCD中,角DAB=60°,E是AD上的动点,F是CD上的动点,满足AE+CF=a,说明;不论E,F怎么移动,三角形BEF总是正三角形.
由AE+CF=a;AD=AE+ED=a;CD=DF+CF=a
∴AE=DF;CF=ED
在菱形ABCD中,连接BD
则有AB=BD=BC
∵ AB=BD,AE=DF ∠BAE=∠BDF=60°
∴△ABE≡△DBF
则有BE=BF
同理可证△BFC≡△BED
∴∠EBD=∠FBC;∠ABE=∠DBF
则∠EBF=1/2∠ABC=60°
在△BEF中 BF=BF ∠EBF=60°
∴△BEF是正三角形
∴AE=DF;CF=ED
在菱形ABCD中,连接BD
则有AB=BD=BC
∵ AB=BD,AE=DF ∠BAE=∠BDF=60°
∴△ABE≡△DBF
则有BE=BF
同理可证△BFC≡△BED
∴∠EBD=∠FBC;∠ABE=∠DBF
则∠EBF=1/2∠ABC=60°
在△BEF中 BF=BF ∠EBF=60°
∴△BEF是正三角形
如图,在边长为a的菱形ABCD中,角DAB=60°,E是AD上的动点,F是CD上的动点,满足AE+CF=a,说明;不论E
在边长为a的菱形ABCD中,角DAB等于60°,E是AD上异于A,D两点的动点,F是CD上的动点,满足AE+CF=a.
如图,边长为4的菱形ABCD中,∠DAB=60°,E是AD上的动点(与A,D不重合),F是CD上的动点,且AE+CF=4
在边长为a的菱形ABCD中,∠DAB=60°,E是AD上异于A,D两点的动点,F是CD上的动点,满足AE+CF=a
如图,在边长a的菱形ABCD中,∠DAB=60°,E是AD边上异于A,D两点的动点,F是CD边上的动点,且满足AE+CF
如图,在边长a的菱形ABCD中,∠DAB=60°,E是AD边上位于A,D两点的动点,F是CD边上的动点,且满足AE+AD
①已知边长为a的菱形ABCD中,∠DAB=60°,E是异于A、D亮点的懂点,F是CD上的动点,满足AE+CF=a,求证:
如图,在边长为2a的菱形ABCD中,角DAB=60°,E是AD上不同于A,D两点的一动点,F是CD上一动点,且AE+CF
如图,在边长为M的菱形ABCD中,∠DAB=60°,E是AD上不同于A,D两点的一动点,F是CD上一动点,且AE+CF=
边长为a的菱形ABCD中 ∠DAB=60度 E为AD上异于A D两点的一动点F为CD边上的动点 且AE+CF=a 求出三
如图,在边长为m的菱形ABCD中,∠DAB=60°,E是AD上不同于A、D两点的一动点,F是CD上一动点,且AE+CD=
如图,菱形ABCD的边长为2,BD=2,E,F分别是边AD,CD上的两个动点,且满足AE+CF=2,试说明三角形BDE全