1 (1-x)²函数展开成幂级数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:55:47
f(x)=1/(x+2)(x-1)=1/3[1/(x-1)-1/(x+2)]=-1/3[1/(1-x)+0.5/(1+0.5x)]=-1/3[1+x+x^2+.+0.5(1-0.5x+0.5^2x^2
f(x)=1/(x^2+3x+2)=1/(x+1)-1/(x+2)=1/(x+1)-(1/2)/(1+x/2)=∑(n=0,+∞)(-x)^n-(1/2)∑(n=0,+∞)(-x/2)^n|x|
f(x)=1/(x+2)=1/[5+(x-3)]=(1/5){1/[1+(x-3)/5]}=(1/5)∑(n=0~∞)[-(x-3)/5]^n
f(x)=-1/3*1/(1-x/3)=-1/3*[1+x/3+x^2/9+x^3/27+x^4/81+.]=-1/3-x/9-x^2/27-x^3/81-...收敛域为|x|
f(x)=(cosx)^2=(cos2x+1)/2=cos2x/2+1/2=(i从0到正无穷){(-1)^i【(2x)^(2i)】/(2i)!}/2+1/2=(i从0到正无穷)(-1)^i*2^(2i
分解成部分分式:f(x)=1/[(x-2)(x-3)]=1/(x-3)-1/(x-2)根据1/(1-x)=1+x+x^2+.x^n+.得:1/(x-3)=-1/[3(1-x/3)]=-1/3(1+x/
f(x)=1/x=1/[1+(x-1)]=Σ(n从0到∞)(-1)^n*(x-1)^n收敛区间:|x-1|
1/(2+x)=1/(2+3+x-3)=1/5(1+(x-3)/5)=(1/5)*∑(-1)^n((x-3)/5)^n=(1/5)*∑(-1)^n(x-3)^n/5^nn从0到∞
解题过程在图片中哦...
1/(x+1)=1/(3+x-2)=(1/3)/[1+(x-2)/3)]=(1/3)∑(0,+∞)(-1)^n[(x-2)/3)]^n|x-2|
f(x)=1/(x-2)(x-1)=1/(x-2)-1/(x-1)=1/2(1-x/2)+1/(1-x)=1/2∑(x/2)n+∑xn∑上面是无穷大,下面是n=0X范围为(-1,1)
由1/(1-x)=1+x+x^2+x^3+...|x|
就讲一下思路了.(1)首先把f(X)=1/x^2看成是g(x)=-1/x的导数,也就是f(x)=g'(x).(2)将g(x)展开成x+1的幂级数.g(x)=-1/x=1/(1-(x+1))这样就可以把
为什么没有人回答呢,太简单了吗?根据等比数列公式,1/(1+2x)=1/(1-(-2x))=1+(-2x)+(-2x)^2+(-2x)^3+...+(-2x)^(n-1)+...,这是因为等比数列前n
/>
f(x)=(1-x)/(1-x)(1+x+x^2)(1-x)*[x^3+x^6+...+x^3n+...)]
lnx在x=0无定义,故不能展开成x的幂级数再问:利用幂级数展开求其从0到1的积分
解题过程请看附图.
经济数学团队帮你解答,有不清楚请追问.满意的话,请及时评价.谢谢!
套用一个结果:(1+x)^m=1+mx+m(m-1)2/2!×x^2+...,-1≤1x≤1(m是个正数)把m换作1/2,x换作x^2,得到√(1+x^2)的幂级数展开式,再求导就是了