如图,角ABC=30°,点M上且OM=5㎝,以M为圆心

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:58:38
如图,角ABC=30°,点M上且OM=5㎝,以M为圆心
(2014•南昌二模)如图,已知△ABC中,AB=1,AC=2,∠BAC=120°,点M是边BC上的动点,动点N满足∠M

(1)由AN=λAC(λ>0),得点N在射线AC上,∠BAM=90°,因为△ABC的面积等于△ABM与△ACM面积的和,所以12AB•AM+12AC•AM•sin30°=12AB•ACsin120°,

如图,在三角形ABC中,AB=AC,点M在边BC上,过点M分别作AB、AC的平行线.

连接DE,AM,因为菱形两条对角线垂直,且任意邻边相等,所以当四边形AEMD是菱形时,AD=AE,DE与AM垂直,而AD=AE时,三角形ADE和三角形ABC同为等腰三角形,所以,三角形ADE和三角形A

如图1,已知△ABC中,AB=BC,∠ABC=90°,点E,F在AB,AC上,且EA=EF,点O位AF中点,点M为CE中

楼主,按旋转的规律:点FOAC就是在一条直线上.连接EA.EA为等腰直角三角形AEF的高和中线.根据余弦定理:在三角形OAB与EAC中,角OAB=角EAC令AE=EF=a,AB=BC=bOA=FA/2

如图:等腰三角形ABC的腰长为6,顶角角BAC=30,AD是BC边上的中线,M是AD上的动点,E是AC边上的动点,则EM

连接BM.因为ABC是等腰三角形,AD为BC上的中线,所以AD垂直且平分于BC(原理:等腰三角形三线合一)又因为MD在AD上,所以MD也是BC的中垂线.则BM=CM.(原理:中垂线上的点到线段两端的距

已知如图,在等腰Rt△ABC中,角C=90°,AC=2,M是边AC上一点.过点M的直线交CB的延长线于N,交边AB于P,

能.设圆心为O,⊙O切AB于Q,圆半径为R,那么OQ=OC=OM=R,OA=R√2,由AC=2得R+R√2=2,解出R=2√2-2,于是x=AC-CM=2-2R=2-2(2√2-2)=6-4√2≈0.

已知如图在RT△ABC中,AB=AC,角A=90°,点D为BC上任意一点,DF⊥AB于F,DE⊥AC于点E,M为BC的中

证明:连结AM∵∠BAC=90°,AB=AC,M是BC的中点∴AM=BM,∠BAM=∠CAM=45°,AM⊥BC∵DF⊥AB,DE⊥AC,∠BAC=90°∴四边形AFDE是矩形,∴DF=AE∵DF⊥A

如图,AC是圆O的直径,点B在圆O上,∠BAC=30°,BM⊥AC交AC于点M,EA⊥平面ABC,FC//EA,AC=4

1、AE⊥平面ABC,BM⊥AC,∴根据三垂线定理,BM⊥EM,AC=4,〈BAC=30度,BC=AC/2=2,CM=BC/2=1,AM=AC-CM=3,AE=AM,∴三角形EAM是等腰直角三角形,〈

如图,△ABC中,∠ACB=90°,∠CAB=30°,点M是AC的中点,将△ABC绕点M逆时针方向

阴影面积分为2个部分,即三角形CDE面积和弧BD与弦BD围成的面积A点逆时针旋转30°可知∠DAB=30°,所以弧BD与弦BD围成的面积=扇形ADB的面积-三角形ADB的面积,这里AB=√2,很容易求

如图7,在Rt△ABC中∠B=90°,AB=BC=8,点M在BC上,且BM=2,点N是AC上一动点,则BN+MN的最小值

在RT△ABC外取一点D,连结AD,CD使四边形ABCD为正方形在边CD上取一点P,使PC=MC=8-2=6连结PN,则由△MNC≌△PNC知MN=PN所以BN+MN=BN+NP由三角形三边关系知在△

如图,△ABC中,点D,E在边AB上,点F在边BC上,点G在边AC上,EF、CD与BG交于M、N两点,∠ABC=50°

1、证明:∵∠BMF+∠GNC=180,∠BMF+∠GMF=180∴∠GNC=∠GMF∴CD∥EF(同位角相等,两直线平行)2、解∵CD∥EF∴∠DCB=∠EFB(两直线平行,同位角相等)∵∠GDC=

如图三角形ABC是等腰直角三角形 角C=90度 点M在AC上 点N在BC上,沿MN将角MCN翻折 使点C落在边AB上 设

当点P不是AB边上的中点时PA:PB=CM:CN依然成立.延长NP,过A作AD∥BC交NP的延长线于D,连接PM、PN、MD由AD∥BC→△ADP∽△BPN→AP:PB=PD:PN①∵△PMN是由△C

如图1,已知三角形ABC中,角ABC=90°,点M为BC上一点,点E,N在AC上,且EB=EM.MN=NC

(2)过E作EF垂直BC交于F,过N作NG垂直BC交于G,过N作NH平行BC交EF于H由EF平行NG,GH平行BC得ABC与EHN为相似三角形因为EBC与NMC为等腰三角形,EF,NG垂直BC所以BF

如图,AC是圆O的直径,点B在圆O上,∠BAC=30°,BM⊥AC交AC于点M,EA⊥平面ABC,FC∥EA,AC=4,

(1)证明:∵EA⊥平面ABC,BM⊂平面ABC,∴EA⊥BM.又∵BM⊥AC,EA∩AC=A,∴BM⊥平面ACFE,而EM⊂平面ACFE,∴BM⊥EM.∵AC是圆O的直径,∴

如图,△ABC中,D为BC的中点,M为AB上的一动点,N为AC上一动点,N为AC上一动点,且∠MDN=90°.(1)求证

哥们,你不会百度吗?http://zhidao.baidu.com/question/578934446.html延长ND到DE,使DE=DN,连结ME由垂直,D为BC中点,易证△NCD≌△EBD,C

如图,在Rt△ABC中,∩C=90°,AB=5,cosB=4/5,点M是边BC上的点

1)过M做MD垂直于AB,则BD=DN=4x/5y=5-2(4x/5)(x>0)即y=5-8x/5y≥0,所以5-8x/5≥0,x≤25/8所以定义域为(0,25/8]2)角NMB是固定值,当x=25

如图,在Rt△ABC中,∠BAC=90°,AB=AC,点M、N在边BC上,(2)如果M、N是边BC上的两个动点,且满足∠

(2)MN2=BM2+NC2成立.证明:过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠C=45°.∵CE⊥BC,∴∠ACE=∠B=4

如图,在Rt△ABC中,∠BAC=90°,AB=AC,点M、N在边BC上, (2)如果M、N是边BC上的两个动点,且满足

做CF垂直CM,并使CF=CN,连接AF,MF;角ACM+NCB=45,角ACM+ACF=45;则角ACF=BCN;又因AC=BC,NC=FC;则三角形BCN≌ACF;即角CAF=CBN=45,BN=

(2014•陕西一模)如图,AC是圆O的直径,点B在圆O上,∠BAC=30°,BM⊥AC交AC于点M,EA⊥平面ABC,

(Ⅰ)证明:∵EA⊥平面ABC,FC∥EA,∴FC⊥平面ABC∵AB⊂平面ABC∴FC⊥AB又∵AC是直径,B在圆上,∴AB⊥BC∴AB⊥平面BFC又∵BF⊂平面BFC∴AB⊥BF.(Ⅱ)在△ABC中