如图.AB为圆O的直径.CD⊥AB于点E交圆O于点D,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 02:32:21
如图.AB为圆O的直径.CD⊥AB于点E交圆O于点D,
如图AB为圆O的直径,CD为弦,且CD垂直AB,垂足为H

1,∵E是弧ADB的中点,AB是圆O的直径∴OE⊥AB∴DC∥OE∴∠OEC=∠ECD∵△OEC是等腰三角形∴∠OEC=∠OCE∴∠OCE=∠ECD∴CE平分∠OCD2,∵∠BAC=∠HCB=30,∠

如图,DE是圆O的直径,弦AB⊥CD垂足为C,若AB=6,CE=1则OC=() CD=()

∵DE是⊙O的直径∴AC=BC=1/2AB根据相交弦定理AC*BC=CE*CDCD=AC*BC/CE=3*3/1=9AB=CD+CE=9+1=10OC=1/2AB-CE=5-1=4有没办法证明DE与C

如图,AB为圆O的直径,CD⊥AB于点E,交圆O于C、D两点,OF⊥AC于点F

(1)答案不唯一,只要合理均可.例如:①BC=BD;②OF‖BC;③∠BCD=∠A;④△BCE∽△OAF;⑤BC^2=BE·AB;⑥BC^2=CE^2+BE^2;⑦△ABC是直角三角形;⑧△BCD是等

如图,AB为圆O的直径,CD⊥AB于点E,叫圆O与点D,OF⊥AC于点F.

1.连接OCCD⊥AB于点E,∴BC=BD(垂径定理)∴∠BCD=∠D=30°(等弦所对的圆周角相等)又因∠BEC=90°,BC=1∴BE=BC/2=1/2CE=√(BC²-BE²

,如图,已知AB为圆O的直径,CE切圆O于点C,CD⊥AB于点D,求证CB平分∠ECD

连结AC,CE切圆O于点C=>∠ECB=∠A,AB为圆O的直径=>∠ACB=90=>∠A+∠B=90∠B+DCB=90=>∠A=∠DCB,∴∠ECB=∠DCB =&g

如图,AB为圆O的直径,CD为圆O的弦,且CD⊥AB,垂足为H,∠OCD的平分线CE交圆O于点E,连接OE,求证:E为A

∵AB为直径∴∠ACB=90°∵CD⊥AB∴∠ACH+∠CAB=90°∠ABC+∠CAB=90°∴∠ACH=∠ABC∵O为圆心,AB为直径∴OB=OC=OA∴∠OCB=∠OBC=∠ABC∵CE为∠OC

如图,已知AB为圆o的直径,CD是弦,AB⊥CD于E,OF⊥AC于F,BE=OF.

∴AB是直径,∴∠BCE+∠ACE=90°,∵AB⊥CD,∴∠CAE+∠ACE=90°,∴∠CAE=∠BCE,∵∠AFO=∠CEB=90°,OF=BE,∴ΔAFO≌ΔCEB(AAS).

如图,AB是圆O的直径,CD为弦,CD⊥AB于点E

∵CD⊥AB于点E∴根据勾股定理得(16÷2)²+(AO-4)²=(AO)²∴AO=10

如图,AB是圆O的直径,弦CD⊥AB于P.

1、∵AB是直径,CD⊥AB∴垂径定理:CP=1/2CD=4∠ACB=90°∵∠B=30°∴在RT△BCP中:BC=2CP=8在RT△ABC中:cos∠B=BC/ABAB=BC/cos30°=8/(√

如图,AB是圆O的直径,弦CD⊥AB于P,已知CD=8,∠B=30°,求元O的直径

连接AC,BC因为AB是直径,弦CD垂直AB于P所以CP=1/2CD=4因为∠B=30°,角CPB=90度所以CB=CP/SIN30=4/0.5=8又因为角ACB=90度所以直径AB=CB/COS30

如图,CD为圆O的弦,E、F在直径AB上,EC⊥CD,FD⊥CD求证:AE=BF (2)当弦CD与直径AB相交时,其他条

⑴过OH⊥CD于H,则CH=DH,∵CE⊥CD,DF⊥CD,∴CE∥OH∥DF,∴OE/OF=CH/CH=1,又OA=OB,∴AE=BF.⑵不一定成立,因为E或F不一定在直径AB上,可能在其延长线上.

如图,AB为⊙O的直径,弦CD⊥AB于点E.

(1)∵直径AB⊥弦CD,∴AB平分弦CD,即CE=12CD=3.在Rt△OCE中,由勾股定理,得OE=OC2−CE2=52−32=4;(2)②,证明:连接OP(如图1),∵OC=OP,∴∠2=∠3,

如图,在圆O中,AB,CD为两条弦,且AB‖CD,直径MN经过AB的中点E,交CD于F.1.求

因为MN过圆心,且经过AB中点,所以MN垂直于AB,所以MN垂直于CD,所以MN与CD交于CD的中点,因此F为CD中点.因为MN垂直于AB和CD,所以M,N为狐AB,CD的中点,即狐AM=BM,CN=

如图,AB为圆O的直径,CD为圆O得弦,

1连接BD.因为角ACD与角ABD对应同一条弦AD,所以,角ACD=角ABD,有因为AB为直径,所以三角ABD形为直角三角形,所以角BAD=48度.2在直角三角形ABD中,AB的平方=AD的平方BD的

如图,AB是○O的直径,玹CD⊥AB与H,过CD延长线上一点E做圆O的切线交AB的延长线于F,切点为G,连接AG交CD

1,GO=OA∠OAG=∠OGA∠HKA=90-∠OAG ∠KGE=90-∠OGA∠HKA=∠KGE ∠GKE=∠HKA∠KGE=∠GKEKE=GE2,条件有问题,KE^2=KD*

如图,AB是圆O的直径,CD是弦,AE⊥CD,BF⊥CD,E,F分别为垂足,BF交半圆于G.

证明:连接AC、AD、AG、DG,∵AB是圆O的直径,∴∠AGB=RT∠,AE⊥CD,BF⊥CD,E,F分别为垂足,∴四边形AEFG是矩形.∴AE=GF,EF//AG,∴∠ADE=∠DAG,∴②弧AC

如图,AB为圆O的直径,弦CD⊥AB于E,已知AB=20,EB=2,求CD的长.

连接OC∵AB为圆O的直径,弦CD⊥AB于E∴CE=½CD∵AB=20,EB=2∴OC=OB=10,OE=8∴OC²=CE²+OE²∴CE=√﹙100-64)=

如图,AB,CD是圆O的直径,且AB⊥CD,P为CD延长线上一点,PE切圆O为E,BE交CD于F,AB=6cm,PE=4

连接OE∵∠PEF=90°-∠OEB=90°-∠OBE=∠OFB=∠EFP∴PF=PE=4由勾股定理 PO²=PE²+OE²,得PO=5OF=PO-PF=1,&