如图1,三角形abc是正三角形,三角形BDC是顶角角BDC等于120度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 02:10:05
如图1,三角形abc是正三角形,三角形BDC是顶角角BDC等于120度
如图,已知三角形ABC是边长为1的正三角形,三角形BCD为等腰三角形,其中角BDC=120度,过点D作三角形MDN=60

AM+MN+NA=2.理由如下:延长AC到P,使得CP=BM,∵∠ABD=60°+30°=90°[∠CBD=(180°-120°)÷2=30°]∴∠ACD=90°,BD=CD∴△MBD≌△PCD(S,

如图,已知△abc是正三角形,p为三角形内一点,且PA=3

可把三角形ABC内的三个三角形分别沿AC,BC,AB折叠,得到对应点P,P2,P3,得到一个六边形,三角形ABC的面积为六边形面积的1/2,然后再连接P1P2P3得到四个特殊的四边形,此题答案也就出来

如下图 在三棱柱ABC=A1B1C1中 三角形ABC与三角形A1B1C1都为正三角形且AA1⊥面ABC F.F1分别是A

证明1:由题意可知,在平面ACC1A1上,直线AF∥直线C1F1,且直线AF=直线C1F1,所以四边形AFC1F1为平行四边形,即直线AF1∥直线FC1,所以直线FC1∥平面AF1B1同理,在平面F1

如图,在直角三角形ABC中,角CAB=90度,角CAB=30度,D是BC上任一点,说明三角形CEF式正三角形的理由

根据直角三角形斜边上的中线等于斜边的一半,这条原理解答.因为:RT△ACD中,CF是斜边AD上的中线所以:CF=AF=FD△FAC是等腰三角形,∠AFC=180°-2∠CAF同理因为:RT△AED中,

1)已知:如图1,三角形ABC是圆O的内接正三角形,点P为弧BC上一动点,求证PA=PB+PC

以P为圆心,PB为半径画圆,交AP于D,连接BD则:△PBE为正三角形即:PD=PB∵∠ADB=180-60=120º,∠CPB=60+60=120º∴∠ADB=∠CPB 

如图,三角形abc是正三角形,三角形bdc是等腰三角形,bd等于cd,角bcd等于120度,以d为顶点作一个60度的角,

BM+CN=MN.证明:BD=CD,∠BDC=120°,则∠DBC=∠DCB=30°,∠DBA=∠DCA=90°.延长AC到P,CP=BM,连接DP,则⊿DCP≌⊿DBM,DP=DM;∠PDC=∠MD

如图,△DEF是正三角形,AD=BF=EC,求证:△ABC是正三角形.

如果用初中的做法的话,如下:经过仔细推敲,暂时未发现证明过程有问题

初二几何有关中位线的如图,已知三角形ABC是锐角三角形,分别以AB.AC为边向外作两个正三角形ABM和正三角形CAN,D

连接BN,CM∵等边△ACN,等边△ABM∴AB=AM,AC=AN∠CAN=∠BAM=60°∴∠CAN+∠BAC=∠BAM+∠BAC即∠BAN=∠CAM∴△BAN≌△MAC∴BN=CM又∵BN=2EF

操作:如图1,三角形ABC是正三角形,三角形BDC是顶角,角BDC=120°的等腰三角形

三角形BDC是等腰三角形,且∠BDC=120°,所以∠BCD=∠DBC=30°三角形ABC是边长为3的等边三角形,∠ABC=∠BAC=∠BCA=60°∠DBA=∠DCA=90°顺时针旋转三角形BDM使

如图以三角形ABC各边为边,在BC内侧作正三角形BCE,正三角形ACE,正三角形ADB.连结DE、EF.

考查△FEC和△ABC,由题意知FC=AC,EC=BC,∠FCE=∠ACB=60°-∠ECA,所以△FEC≌△ABC,FE=AB=AD.同理可证△DBE≌△ABC,得DE=AC=AF.在四边形DAFE

如图,正三角形ABC的边长为a,D是BC的中点,P是AC边上的点,连接PB和PD得到三角形PBD.求

1.P为AC中点时,△PDC为正三角形,△PBC为直角三角形PB=√3·PC=√3·a/2PD=a/2△PBD周长L=PB+PD+BD=a+√3·a/22.作点B关于AC对称的点B',连DB'交AC于

已知:如图,三角形ABC是锐角三角形,分别以AB、AC为边向外作两个正三角形ABM和三角形CAN,

稍等再答:证明:∵正△ABM,正△CAN∴AB=AM,AC=AN,∠BAM=∠CAN=60∵∠BAN=∠BAC+∠CAN,∠MAC=∠BAC+∠BAM∴∠BAN=∠MAC∴△ABN≌△AMC(SAS)

如图,三棱柱ABC–A1B1C1中,底面三角形ABC是正三角形,AA1=AB=2,平面ACC1A1⊥平面ABC,∠A1A

图那.在哪里.再问:能帮忙吗,理综的题再答:视难度而定。。。但你不发图,我怎么知道能不能做哪,不过一般可以。。。

O是边长为1的正三角形ABC的中心 将三角形ABC绕点O(正三角形重心)沿逆时针方向旋转180度的三角形A1B1C1则

连接各交点,将重叠部分分为了6个小三角形,可以看出这6个小三角形是全等的正三角形,且和非重叠部分的6个小三角形也全等.从而知道重叠部分的面积为6/9*原三角形的面积√3/6

如图 三角形abc为正三角形,CF =BD,BE=DC,则∠EDF=

因为三角形ABC是正三角形所以角B=角C在三角形DFC、三角形EDB中:DC=EB角B=角CCF=BD所以三角形DFC全等于三角形EDB(SAS)所以角EDB=角DFC,角BED=角CDF所以角EDC

如图,p是正三角形ABC内的一点,若将三角形PAB绕点A逆时针旋转到三角形P'AC,则角PAP'等

∵△P‘AC是△PAC绕点A旋转得到的∴△PAB≌△P’AC∴∠P‘AC=∠PAC∵△ABC是等边三角形∴∠BAC=60°∴∠PAP’=∠P‘AC+∠PAC=∠PAC+∠PAB=∠BAC=60°记得及