如图1,在△ABC中,O是∠ABC和∠ACB的平分线的交点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 12:46:49
如图1,在△ABC中,O是∠ABC和∠ACB的平分线的交点
已知如图,在三角形abc中,o是三角形abc两个外角的平分线的交点,求证:点o在角a的平分线上

证明:作OD⊥AB于D,OE⊥CB于E,OF⊥AC于F.∵∠OBC=∠OBD∠OCB=∠OCF∴OD=OEOE=OF∴OD=OE∴点o在角a的平分线上

如图 在三角形ABC中,O是∠B ∠ C外角的平分线的交点,那么点O在∠A的平分线上吗

过O点做OE垂直AC,OF垂直BC,OH垂直AB因为O是∠B∠C外角的平分线的交点所以OE=OF,OG=OF多以OG=OE所以点O在∠A的平分线上

如图,在△ABC中,O是高AD和BE的交点.

(1)∵O是高AD和BE的交点,∴∠OEC=∠ODC=90°,∴∠C+∠DOE=180°;∵∠DOE+∠AOE=180°,∴∠AOE=∠C;(2)由(1)可知,如果一个角的两边分别垂直于另一个角的两边

1.如图,在△ABC中,∠ABC,∠ACB的角平分线交于点O,则∠BOC=90°+1/2∠A

1、∠BOC=180°-(∠OBC+∠OCB)=180°-1/2(∠ABC+∠ACB)=180°-1/2(180°-∠A)=180°-90°+1/2∠A=90°+1/2∠A2、∠BO2C=180°-(

已知:如图,在△ABC中,O是∠B,∠C外角的平分线的交点,那么点O在角A的平分线上吗

在.0是△ABC的旁心.相关证明利用两次角平分线性质定理就能推导出来,加油吧.

如图16,在△ABC中,∠A=600,D是AB上一点,E是AC上一点,BE、CD相交于点O,

由题可知角A=60角ACD=30所以角ADC=90因为角DBO+角DOB=90,且角DOB=55所以角ABE=35这是我算的过程,不得65,你看看是不是题的角度标错了

如图1,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=23.动点O在AC边上,以点O为圆心,OA长为半径的⊙O

(1)相切;证:OD=OA,所以角ODA=角A=30度;所以角COD=60度;因为D在中点,所以CD=AD;所以角OCD=角A=30度;所以角ODC=90度;所以OD垂直于CD,得证.(2)有正弦定理

如图,在等腰Rt△ABC中,∠A=90°,AC=9,点O在AC上,且AO=2,点P是AB上一动点,连接OP将线段OP绕O

过点D作DE⊥AC于E,则∠DOE+∠AOP=90°,∠DOE+∠ODE=90°,∴∠ODE=∠AOP,又∵OD=OP,∠DEO=∠OAP=90°,∴△DEO≌△OAP,∴DE=OA=CE=2,∴AP

如图,在△ABC中,∠ACD是△ABC的一个外角,∠ABC,∠ACD的平分线相交于点O,若:∠A=40°,求∠BOC的度

∵∠ABC的平分线和∠ACB的外角平分线相交于点O∴∠OBC=1/2∠ABC∠OCD=1/2∠ACD又∠A+∠ABC=∠ACD∴1/2(∠A+∠ABC)=1/2∠ACD即1/2∠A+1/2∠ABC=1

如图,在△ABC中,OB、OC分别是∠ABC和∠ACB的平分线,过点O作MN∥BC.若BC=24,求△ABC的周长与△A

因为MN∥BC,所以∠OBC=∠MOB=∠MBO,那么MB=MO因为MN∥BC,所以∠OCB=∠MOC=∠MOO,那么NC=NO△ABC的周长=AM+AN+MB+NC+BC△AMN的周长=AM+AN+

如图:在△ABC中,O是∠ABC与∠ABC的平分线的焦点.求证:点O在∠A的平分线上

用塞瓦定理来证:三角形ABC内先引两条角分线设为AOBO交于O点然后连接CO并由塞瓦三角形式sin∠OAB/sin∠OAC*sin∠OCA/sin∠OCB*sin∠OBC/sin∠OBA=1因为AOB

已知:如图,在△ABC中,O为∠ABC、∠BCA外角的平分线的交点,那么点O在∠A的平分线上?为什么?

在作OF⊥BCOG⊥ADOH⊥AE因为角平分线上一点到叫两遍距离相等所以OF=OG=OH所以O点在角A的平分线上再问:什么意思??“作OF⊥BCOG⊥ADOH⊥AE”?再答:做辅助线OF垂直BC垂足为

已知 如图在三角形ABC中O是∠b,∠c外角的平分线的交点,那么点o在∠A的平分线上么?

O在∠A的平分线上.证明:过O作OD⊥AB交AB延长线于D,OE⊥BC于E,OF⊥AC交AC延长线于F,∵OB为角平分线,∴OD=OE,∵OC为角平分线,∴OF=OE,∴OD=OF,∴在∠A的平分线上

例3.在Rt△ABC中,∠ABC=90°,点O是BC边的中点,以O为圆心,OB为半径作⊙O.(1)如图1,⊙O与AC相交

解题思路:(1)连接OD、BD,根据圆周角定理得到∠BDC=90°,则E为Rt△ABD的斜边AB的中点,根据直角三角形斜边上的中线性质得到DE=BE=1/2AB,则∠EBD=∠EDB,由于∠EBD+∠

如图,在△ABC中,O是△ABC的内心,若∠A=50°,则∠BOC=______.

∵O是△ABC的内心,∴OB,OC分别平分∠ABC,∠ACB,∴∠OBC+∠OCB=∠ABC+∠ACB2=180°−50°2=65°,∴∠BOC=180°-65°=115°.故填115°.

如图,在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A,D作⊙O,使圆心O在AB上,⊙

(1)连结DO,则A0=DO,所以∠A=∠ADO.因为∠A+∠CDB=90°,所以∠ADO+∠CDB=90°所以∠ODB=90°,即直线BD与⊙O相切.(2)连结DE,由题易得△ADE与△ACB相似,

如图,在△ABC中,O为其内部一点,比较∠BOC和∠A的大小.

延长BO交AC于点D,∵∠ODC是△ABD的外角,∴∠A+∠ABD=∠ODC.∵∠BOC△ODC的外角,∴∠BOC=∠ODC+∠OCD,∴∠BOC=∠A+∠ABD+∠OCD,∴∠BOC>∠A.

如图,在△ABC中,∠B=60°,⊙O是△ABC外接圆,过点A作⊙O的切线,交CO的延长线于P点,CP交⊙O于D;

(1)证明:连接AO,则AO⊥PA,∠AOC=2∠B=120°,∴∠AOP=60°,∴∠P=30°,又∵OA=OC,∴∠ACP=30°,∴∠P=∠ACP,∴AP=AC.(2)在Rt△PAO中,∠P=3