如图1,在正方形abcd中点ef分别是边bcab上的点且ce=bf连接de

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:49:14
如图1,在正方形abcd中点ef分别是边bcab上的点且ce=bf连接de
如图,在正方形ABCD中,E为AB中点,F在AD上,且AF=1/3FD,求角CEF的度数

解法1:(根据图形猜测度数为90°,可根据已知条件构造勾股定理)设AF为n,则FD=3n,AE=BE=2n,AB=BC=CD=AD=4n由勾股定理,对⊿AEF、⊿CDF、⊿BCE分别列方程得EF^2=

如图,在四棱柱P-ABCD中,底面ABCD是正方形侧棱PD⊥底面ABCD,PD=DC,E是PC中点

因为pd垂直abcd,所以bc垂直pcd,所以bc垂直de因为e为pc中点且pd等于dc,所以de垂直pc所以de垂直pbc所以bde垂直pbc请采纳答案,支持我一下.

如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,E是PC的中点.

(1)证明:连结AC、AC交BD于O,连结EO, ∵底面ABCD是正方形,∴点O是AC的中点,在△PAC中,EO是中位线, ∴PA∥EO,而平面EDB且平面EDB,所以,PA∥平面

如图,在正方形ABCD中,F为DC中点,E为BC上一点,且EC=1/4BC,证明∠AFE=90°

连接AE因为ABCD为正方形,设AB=BC=CD=DA=a,又EC=1/4BC,F为DC中点,所以有BE=3/4a,CE=1/4a,CF=DF=1/2a由勾股定理,知AF平方=DF平方+AD平方=5/

如图,在正方形ABCD中,E为CD的中点,F为BC上的一点,且CF=1/4BC,试说明:AE垂直EF

因为在正方形ABCD中,E为CD中点,所以DE=EC=1/2AD因为CF=1/4BC,且BC=AD,所以CF=1/2CE因为角D=角C=90度所以直角三角形ADE相似于直角三角形ECF所以角DAE=角

如图在正方形ABCD中,E是DC中点,F是BC上一点,CF=4分之1BC,求证AE平分角DAF

设AB=4  AD=4  DE=2  AE=2√5EF=√﹙2²+1²﹚=√5  AF=√﹙4

如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E,F分别为AB,PB的中点

(1)CD⊥ADP∴CD⊥APEF∥=AP/2﹙中位线﹚∴EF⊥CD⑵设PD=1取坐标系D﹙000﹚A﹙100﹚C﹙010﹚P﹙001﹚设G﹙a,0,b﹚∈PAD则F﹙1/2,1/2,1/2﹚GF=﹛

如图,正方形ABCD的边长是4,F是DC的中点,E在BC上,CE=1/4BC.求证:∠AFE=90º

证明:∵四边形ABCD是正方形∴∠B=∠C=∠D=90°∵正方形ABCD边长为4∴BC=CD=AD=4∵F是中点∴CF=DF=1/2CD=2∵CE=1/4BC∴CE=1BE=BC-CE=3AE=5EF

如图,在正方形ABCD中,E是BC的中点,△DEF的面积等于2,则此正方形ABCD的面等于

∵AD‖BE∴△ADF∽△EBF∵E是BC中点∴BE∶AD=BF∶FD=1∶2∵△DEF面积为2∴△BEF面积为1(高相同)∴△BDE的面积为3∴△BCD的面积=6∴正方形ABCD的面积=12选择B

如图,在正方形ABCD中,E是AB的中点,BF=1/4BC,试说明△ADE∽△BEF

AD:BE=AB:BE=AB:AB/2=2,[正方形ABCD,AB=AD,E是AB的中点,BE=AB/2]AE:BF=AB/2:BC/4=AB/2:AB/4=2,[正方形ABCD,AB=BC,E是AB

如图,已知正方形ABCD中,E为BC的中点,F在AB上,BF=1/2BE,试说明角FED=90度

用勾股定理和逆定理:设AB=4,则BE=EC=2,BF=1,AF=3用勾股定理可求:EF=√5,DE=√20,DF=5故EF的平方+DE的平方=DF的平方∴角FED=90度

如图,在四棱锥P‐ABCD中,四边形ABCD为正方形,PA⊥平面ABCD,E为PD的中点.求证:

(1)连结BD,AC交于O.∵ABCD是正方形,∴AO=OC,OC=12AC连结EO,则EO是△PBD的中位线,可得EO∥PB∵EO⊂平面AEC,PB⊄平面AEC,∴PB∥平面AEC(2)∵PA⊥平面

已知:如图,在正方形ABCD中,E.F分别为BC,CD的中点.求证:AE=AF

∵ABCD是正方形∴AD=AB=CD=BC∠D=∠B=90°∵E.F分别为BC,CD的中点.∴BE=1/2BC=1/2ABDF=1/2CD=1/2AB∴BE=DF在Rt△ABE和Rt△ADF中AB=A

如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点.

十几年了,最近突然开始回顾学生时代,只有这立体几何还记得,(1)求证:EF⊥CD;∵ABCD为矩形∴CD⊥AD又∵PD⊥平面ABCD∴PD⊥CD∴CD⊥平面PAD,CD⊥PA∵E、F均为中点∴EF∥P

如图,在正方形ABCD中,E是AD的中点,点F在DC上

设AB=4.则BE=√20,EF=√5,BF=5.BE²+EF²=BF²∴∠BEF=90º.BE⊥EF.无量寿佛,佛说苦海无涯回头是岸!施主,我看你骨骼清奇,器

如图,在正方形ABCD-A1B1C1D1中,E,F分别为棱D1D和B1C1的中点,求证

1连接BD交AC于点O,则可知,O是BD的中点.所以EO是三角形BDD1的一条中位线.所以有,EO//BD1因为EO∈平面EAC,DB在平面EAC外,所以,BD1//面EAC2连接B1O,由于B1C=

如图,在正方形ABCD中,E为BC的中点,F在CD上,且CF=1/4CD,△AEF是直角三角形吗?为什

(我这个回答近仅限于选择题)用特殊值法,设这个正方形的边长为4,则BC长2,CE长2,CF长1,DF长3,在RT三角形ABE中,有勾股定理得AB的平方加BE的平方等于AE的平方等于20(当然也可以是根

如图,在正方形ABCD-A1B1C1D1中,E,F,M,N分别为棱AB,CC1,C1D1的中点.

连接BA1,A1NBA1//EM,A1C1//EC所以面BA1NF//EMC因为面BFN属于面BA1NF所以平面CEN//平面BFN

三角形中线问题如图,在正方形ABCD中,E是AB中点

目测三角法,现行送上(O为CE,BF交点)修正完整版再问:这个题是初二初三的题,有没有容易理解的解法?比如说图形法,反证法等,谢谢再答:当然有,只是习惯了用计算,懒得添辅助线延长BF交AB于H可以证明