如图1,在正方形ABCD内作角EAF=45°

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:38:05
如图1,在正方形ABCD内作角EAF=45°
如图,已知正方形ABCD的面积为64,△ABE是等边三角形,且点E在正方形ABCD内.

正方形ABCD的面积为64∴边长=8以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP&

如图,在正方形ABCD中,对角线

证明:∵四边形ABCD是正方形∴OD=OC,OD⊥OC∴∠COF=∠BOE=90°又∵OE=OF∴△COF≌△BOE(SAS)∴CF=BE

如图,在四棱柱P—ABCD,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,

在正方形ABCD中,连接AC、BD,相交与点G,连接EG∵点E是PC的中点,点G是AC的中点∴EG∥PA∵EG为平面EDB上的线∴PA//平面EDB∵侧棱PD⊥底面ABCD∴PD⊥CD,PD⊥BC∵P

如图,正方形纸片ABCD和正方形EFGH的边长都是1,点E是正方形ABCD的中心,在正方形EFGH绕着点E旋转的过程中,

(1)两个正方形重叠部分的面积保持不变;(2)重叠部分面积不变,总是等于正方形面积的14,即14×1×1=14,连接BE,CE,∵四边形ABCD和四边形EFGH都是正方形,∴EB=EC,∠EBM=∠E

如图,在四棱锥S-ABCD中,底面ABCD是正方形,

第三个问题:利用赋值法,令SA=AB=AD=DC=1,则容易求出:SD=AC=√2、SC=√3.∵AN⊥SC,∴由射影定理,有:AC^2=CN×SC,∴CN=AC^2/SC=2/√3=(2/3)√3,

某数学兴趣小组开展了一次课外活动,过程如下:如图1,正方形ABCD中,AB=6,将三角板放在正方形ABCD上,使三角板的

(1)证明:∵∠ADC=∠PDQ=90°,∴∠ADP=∠CDQ.在△ADP与△CDQ中,∠DAP=∠DCQ=90°AD=CD∠ADP=∠CDQ∴△ADP≌△CDQ(ASA),∴DP=DQ.(2)猜测:

如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE.GC

(1)过D点做DP平行于AE,交CG于Q∵DE=DG,EP=CD,∠DEP=∠GDC=90°∴△DPE≡△GCD∴∠EDP=∠DGC∴∠DQC=90°∴DP⊥GC∵AE平行于DP∴AE⊥GC(2)过C

如图,在正方形ABCD–A1B1C1D1

画展开图再问:再问:�ܰ��æô��再问:再问:��һ��?再答:�㻭��չ��ͼ�������ܹ��Ƴ�����再问:��һ��Ŷ��再答:�⣿再答:������再问:���黹Ҫ����ô��再问:

如图1 在正方形abcd中 e f分别是

看图:--------------------------------------------------------希望可以帮到你!如对回答满意,--------------------------

如图,在正方形ABCD中,对角线2倍根号2,则正方形的边长为?

设正方形的边长为x,则x²+x²=(2√2)²2x²=8x²=4x=2所以正方形的边长为2

如图,在四棱柱ABCD-A1B1C1D1中,D1D⊥底面ABCD,底面ABCD是正方形,且AB=1,D1D=2.

(1)∵D1D⊥平面ABCD,BD是D1B在底面ABCD上的射影,∴∠D1BD是直线D1B与平面ABCD所成的角,在直角三角形D1BD中,BD=2,D1D=2,则tan∠D1BD=D1DBD=1,∴∠

如图,在正方形ABCD中,以A为顶点

图在哪证明:延长CB到M,使BM=DF,连接AM.∵AB=AD,∠ABM=∠D=90°∴△ABM≌△ADF(SAS)∴AM=AF,∠BAM=∠DAF.∴∠BAM+∠BAE=∠DAF+∠BAE=∠DAB

如图,在六面体ABCD-A1B1C1D1中,四边形ABCD是边长为2的正方形,四边形A'B'C'D'是边长为1的正方形,

 如图,⑴  E.F是CD,DA的中点,A1D⊥D1D  FD⊥D1D A1D,FD共面,∴A1D∥=FDA1D1DF是矩形,A1F∥=D1

如图,在四棱锥P-ABCD中,PA=AB=AD=1,四边形ABCD是正方形,PA⊥平面ABCD,求四棱锥的表面积

ABCD面积为1PAB面积为0.5PAD面积为0.5PB=√2AC=√2PC=√3PBC是直角三角形同理PCD也是直角三角形面积为0.5√2四棱锥表面积为2+√2

如图,在正方形ABCD中.

(1)在正方形ABCD中,AD=DC,AE=DF,∠EAD=∠FDC,所以△EAD≌△FDC,故DE=CF,∴∠EDA=∠FCD,又∵∠DCF+∠DFC=90°,∴∠ADE+∠DFC=90°,∴∠DG

如图,点p在正方形abcd内,△bpc是正三角形,若△bpd的面积是根号3-1,求正方形abcd的边长

设正方形的边长为n,P到BC的高为(根3)n/2角PCD=30度,D到AP的距离为n/2三角形PBC的面积:S1=n*[(根3)n/2]*(1/2)=(根3)n^2/4三角形PCD的面积:S2=2*(