如图1,在边长为4的菱形ABCD中 BAD=60 DE垂直于AB
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:26:11
每条边长为1,总共4厘米
(1)连接AC,因为AB平行CD所以角CDM就是直线AB与MD所成的角而OA⊥底面ABCD又题中数据得AC=1,MD=根号(AM^2+AD^2)=根号2,MC=根号(AM^2+AC^2)=根号2,CD
设CF=X ,AE=M-X三角形BEF的面积(f(x))=菱形的面积-三角形AEB-三角形bfc-三角形EDF三角形AEB=4分之根号3乘(m-x)的平方BFC=4分之根号3乘mxEDF=4
连接AE,交BD于点P,再连接CP,AC,证明出三角形APD全等三角形CPD,就能得出AP=CP,所以PC+PE=AE,求AE的长就可以了.补充,因为AE是在一条直线上的,根据两点之间线段最短,所以A
(1)由已知AB=BC=CD=DA=BD=2,得△ABD和△CBD是等边三角形∴∠ADB=∠C=60°∵AE+DE=AD=2,又∵AE+CF=2∴DE=CF在△DEB和△CFB中:DE=CF∠ADB=
可以像你那样做,或许是你向量坐标弄错了,你再重新确认一下给点的坐标,再算出向量,最后试试...我觉得直接用几何来做更快,向量法麻烦
⑴设P是OD中点,则MP‖AD‖NC.MP=AD/2=NC ,MPCN是平行四边形, MN‖PC∈OCD,MN‖OCD.⑵ 如图,把M-ABCD补成四掕柱,再
DE+DF=2连接AC、BD因为在菱形ABCD中,角ABD=角EBF=60度,角BAE=角BDF=60度,AB=DB所以角ABD-角EBD=角EBF-角EBD即:角ABE=角DBF所以在三角形ABE和
分别以菱形ABCD的各个顶点为圆心,作半径为1的圆,如图所示.在菱形ABCD内任取一点P,则点P位于四个圆的外部或在圆上时,满足点P到四个顶点的距离均不小于1,即图中的阴影部分区域∵S菱形ABCD=A
取AB中点F,连结CF交BD于PE为BC中点,PE等于PF,此时的P即为所求三角形BCF中,角CBF等于60度,BF等于2,CB等于4a所以三角形BCF是直角三角形,CFB是直角,CF等于2√3
1、连结BD、AC,交于O,∵四边形ABCD是菱形,∴AB=BC=CD=DA,∵〈ABC=60°,∴ADC是正△,∴AC=DC=a,PC=a,∵PC⊥平面ABCD,CD、BC、CA∈平面ABCD,∴P
选A连接棱形的那条较短的对角线,易证较短的那条对角线的长度等于棱形的边长.可以看出正六边形的边长是棱形边长的三分之一.可以求得图形的边长为20cm.图形的面积:可以先求出图形一半的面积.在棱形较短的对
连接AC,所以AC垂直BD又AB=BC所以C关于直线BD的对称点为A连接AE,所以AE与BD的交点为所求P点(两点之间,直线段最短)在三角形ABE中由勾股定理可得:cos60=(AB^2+BE^2-A
你的问题是什么啊
(1)证明:∵AE=PE,AF=BF,∴EF∥PB又EF⊄平面PBC,PB⊂平面PBC,故EF∥平面PBC;(2)在面ABCD内作过F作FH⊥BC于H∵PC⊥面ABCD,PC⊂面PBC∴面PBC⊥面A
我只写下思路和必要的式子,因为百度里面我不知道这么把数学符号打上去,见谅(1)取AD的中点Q,连接MQ,NQ在菱形中NQ平行CD,在三角形中MQ平行OD,可判定平面MNQ平行平面OCD,又因为MN属于
向量BE=向量BA+向量AE向量BF=向量BC+向量CF向量BE·BF=(向量BA+向量AE)(向量BC+向量CF)=向量BA×向量BC+向量BA×向量CF+向量AE×向量BC+向量AE×向量CF=(
无论怎么折,阴影部分的周长还是菱形的周长=4*4=16再答:很高兴为您解答!有不明白的可以追问!如果您认可我的回答。请点击下面的【选为满意回答】按钮,谢谢!
几何概型该点到菱形的四个顶点的距离大于1的概率为1-π*1*1/(4*4*sin150°)=1-π/8再问:星号是什么意思?*再答:*是乘号