如图1,菱形ABCD中,点Q是CD的中点,角BCD=60度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:16:12
(1)∵四边形ABCD是菱形,∴AB=BC=AD=CD,∠B=∠D,∵点E、F分别是边BC、AD的中点,∴BE=DF,在△ABE和△CDF中,∵AB=CD∠B=∠DBE=DF,∴△ABE≌△CDF(S
提示:图片不太清晰!学霸们无法解答.下次提问要注意图片质量哦.再问: 再问:刚才的那个图
1∵∠ADE=∠FDE;AE//DF∴∠AED=∠FDE=∠ADE∴△ADE为等腰三角形∴AD=AE∵AD//EF,AE//DF∴四边形AEFD为菱形2∵∠A=60°作高DH⊥ABDH=√3∵四边形A
(1)因为BC=CD,∠BCE=∠DCE,CE=CE,所以△BCE≌△DCE,所以∠BEC=∠DEC=∠PEA,因为∠BAC=∠BCA,所以∠APD=∠CBE;(2)令点D到AB的距离为h,则S△AD
(1)作辅助线AC,由角B=60度,AB=AC,得三角形ABC为等边三角形角B=角ACD=60度AB=AC角BAC=角PAQ=60,则角BAP=60-角PAC=角CAQ可得三角形ABP与ACQ全等因此
(1)DE=BF.理由如下:如图,设AB、EF相交于G,连接BD,在菱形ABCD中,BD⊥AC,∵EF⊥AC,∴EG∥BD,∵E是AD中点,∴EG是△ABD的中位线,∴AG=BG,又∵AD∥BC,∴∠
1、∵DA=DCDF=1/2ADDE=1/2DC∴DF=DE∵∠D=∠D∴⊿ADE≌⊿CDF∴AE=CF2、∵∠E=90°BD=2DE∴∠ABD=30°∵AB=AD=8∴∠ABD=∠ADB=30°∴∠
证明:(1)由菱形ABCD可知:AB=AD,∠B=∠D,∵BE=DF,∴△ABE≌△ADF(SAS),∴AE=AF;(4分)(2)连接AC,∵菱形ABCD,∠B=60°,∴△ABC为等边三角形,∠BA
证明:(1)∵ABCD是菱形,∴AB=AD∠B=∠D.又∵BE=DF,∴△ABE≌△ADF.(2)∵△ABE≌△ADF,∴AE=AF,∴∠AEF=∠AFE.
证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,又∵BE=DF,∴△ABE≌△ADF,∴AE=AF;(2)连接AC,∵AE垂直平分BC,AF垂直平分CD,∴AB=AC=AD.∵AB=BC
因为AE:BC=3:5,所以可设AE=3x,BC=5x,则AB=5x因为AE垂直BC,所以三角形ABE是直角三角形所以可得BE=4x,则CE=5X-4X=X又因为CE=1,所以X=1.AB=5X=5,
设AB为XAB=BC=X因为EC=1BE=X-1AE垂直BCAB的平方=AE的平方+BE的平方X的平方=25+(x-1)的平方X=13所以边长为13
证明:(1)因为菱形ABCD所以AB=CD,∠ABE=∠ADF又因为BE=DF所以△ABE≌△ADF(SAS)(2)因为△ABE≌△ADF所以AE=AF所以∠AEF=∠AFE
AD//BE,所以△AMD∽△EMB,从而BM/DM=BE/DA;而∠BAF=∠DAE,有公共角∠EAF,所以∠BAE=∠DAF,又∠ABE=∠ADF,AB=AD,所以△ABE≌△ADF,所以BE=D
(1)AB=AD,BE=AF,∠ABE=∠ADF,所以△ABE≌△ADF所以AE=AF(2)连接AC,BD,点E.F分别为BC.CD的中点,所以EF=1/2BD,又BD=√3AB,所以EF=√3/2A
由题意可知,PQ是△ADC的中位线,则DC=2PQ=2×3=6,那么菱形ABCD的周长=6×4=24,故选C.
由题意可知,PQ是△ADC的中位线,则DC=2PQ=2×3=6,那么菱形ABCD的周长=6×4=24,故选C.
∵菱形的对角线垂直平分∴∠AOB=90º,AO=½AC,BO=½BD根据勾股定理AB²=AO²+BD²∵AB=2,BO=√3AO∴AO=1,