如图1.过圆o上一点p作两条弦pa.pb.则po平分角apb
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 23:09:46
(1)(2)问都是作垂线</p1,作OC垂直于AP,OD垂直于BP,用等弦所对的弦心距相等,说明OC=OD,所以PO平分角APB.(到角两边距离相等的点在这个角的平分线上)2也是一样的,做垂线3
PA比PB=3比2设比值是x,有PA=3x,PB=2x在RT三角形OPA中,OA=r,AP=3x,OP=r+2x所以有r²+(3x)²=(r+2x)²r²+9x
弦相等,则弦心距相等,∴PO平分∠APB(到角两边相等的点在这个角的平分线上).
(1)证明:∵AB是⊙O的直径∴∠ACB=90°∵OP//BC∴∠POA=∠CBA∵∠P=∠BAC∴∠PAO=∠ACB=90°∴PA是⊙O的切线(2)∵∠P=∠BAC,∠PAB=∠ACB∴△PAO∽△
设ac切圆d于点g,bc切圆d于点f,连接df,fg,ad,bd,cd则有s=s△agd+s△aed+s△cdf+s△sgd+s□bedf因为s/de²=4根号3所以4根号3*de²
存在M=5.理由:BP:AP=7+4√3,BP+AP=AB=6,∴AP=6/(8+4√3)=3(2-√3)/2,∴OP=3-(6-3√3)/2=3√3/2,过定点P最短弦CD,CD⊥AB,cos∠PO
过点P作PD⊥BQ,则可知ABPD为矩形,BD=AP=1PD=ABQD=BQ-BD=-4-1=3由题可知PC=AP=1CQ=BQ=4则PQ=4+1=5在Rt△PDQ中,PD=PQ-QD=5-3则PD=
∵C、A是圆O的切点∴PA=PC同理,EC=EB∴△PDE的周长等于PA+PB,即8
设AP=X时,圆O与CD切于FOP=OF=4-AP/2=4-0.5*X;OP=BP/2=0.5√(X²+3²);4-0.5*X=0.5√(X²+3²);X=55
连接圆心和P点,用尺规画出这一线段的中点,以这条线段的中点为圆心,这条线段的一半长为半径作圆,辅助圆与已知圆的交点就是切点,然后连接就可以了
⑴弦相等,则弦心距相等,∴PO平分∠APB(到角两边相等的点在这个角的平分线上).⑵道理同上.⑶设弦PA交圆于A、C,PB交圆于B、D,∵PA=PB,∴∠PAB=∠PBA,又∠PAB=∠PDC,∠PB
∵PA、PB是⊙O的切线,切点分别是A、B,∴PA=PB=12,∵过Q点作⊙O的切线,交PA、PB于E、F点,∴EB=EQ,FQ=FA,∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,=
过B作BE⊥X轴于E,过C作CF⊥X轴于F,过D作DQ⊥X轴于Q,∵OD=AD=3,∴OQ=1/2OA=2,DQ=√(OD^2-OQ^2)=√5,二次函数最大值之和就是BE+CF的值,设P(m,0),
作B关于MN的对称点F,连OB,OA,根据勾股定理得:OD=8,OC=6,CD=14,连AF与MN相交于一点即为符合题意的P点,过F作MN的平等线交AC的延长线于H,则直角三角形AFH中,FH=DC=
这是作业本上的题目把1):作oc垂直AP于C,作OD垂直PB于D.∵PA=PB∴OC=OD(在同圆或等圆中,相等的弦的圆心距相等)∴∠APO=∠BPO(到角两边距离相等的点在角平分线上)(2):作OE
我正在解答您的问题,请稍候.再问:再答:如图,过点A作圆O的切线AM,则OA⊥AM,即PA⊥AM,∴AM是圆P的切线∴∠1=∠D(弦切角定理)同理∠1=∠EFA,∴∠D=∠EFA,∴EF∥CD&nbs
(1)连接AO、BO、PO,则OA⊥AP,OB⊥BP.在RT△AOP中,AO=8cm,PO=16cm,所以,∠APO=30°.同理,∠BPO=30°.因此,∠APB=60°.(2)连接OM、OE、OF
1.连接AO交BC于E由题意得PA垂直于AOPA平行于BC所以BC垂直于AO又因为OB=OC所以三角形OBE全等于三角形OCEBE=CEBC垂直于AO 所以三角形AB
(1)连接OB,则△PAB是直角三角形,所以PO的平方=PB的平方+OB的平方所以(m+2)^2=2^2+4^2,解得,m=2+2根5.(2)存在这样的点C,使△PBC为等边三角形,点c也是切点,且角