如图13,在△ABC中,中线BE,CD相交于O,F,G分别是ob,oc
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 19:22:50
证明:∵EF是中位线【已知】∴EF=½AB【三角形中位线等于底边的一半】∵CD斜边AB上的中线【已知】∴CD=½AB【直角三角形斜边中线等于斜边的一半】∴EF=CD【等量代换】
(1)△ABC是直角三角形;(2)延长CD至E,使得CD=DE,∵AB与CE互相平分,∴四边形AEBC是平行四边形∵4CD2=CE2,所以AC2+BC2=CE2,所以∠CAE为直角,又∵四边形AEBC
很简单d是中点bd是5ab是13ad是12勾股定理可证再问:我知道用勾股定理证,因为我们学的是勾股定理,可是不会写证明过程。再答:证明:∵AD是△ABCBC边上的中线∴D是BC的中点BD=DC=1\2
RT△ABC中,CD是斜边AB上的中线CD=AD=BD所以,
∵在Rt三角形ABC中,CD是AB上中线,∴AD=BD=ABCD=AB∴CD=BD∴∠B=∠DCA又∵∠CDB=130∴∠B+∠DCA=180-∠CDB=50∴2∠B=50∠B=25又∵三角形ABC为
因为AB=AC又因为BD为中线所以AD=0.5AB所以AD+AB=1.5AB根据三角形三边定理1.5AB大于BD不等式两边同时乘以2,就变为3AB大于2BD抱歉,因为打字不熟练,你得将所有的因为所以转
以AB,AC为边做平行四边形ABCE由于AD是BC边上的中线,所以延长AD一定交与点E在三角形ACE中,有AE
延长AD到E,使DE=ADABD全等于CEDCE=3AE=4AC=5所以角AEC=90度DE=2CB=2CD=2倍的根号13
∵DE是AC的中线∴AE:AC=1:2又∵CD是AB的中线∴AD:AB=1:2∴AE:AC=AD:AB且AE,AC,AD,AB在一个三角形中∴DE//BC
∵Rt三角形且D是AB中点∴AD=CD;∵AC中点∴DE⊥AC;∴∠AED=∠ACB=90°;∴DE‖BC
根据题意:D是AB中点,E是AC中点,那么DE是Rt△ABC的中位线.那么DE‖BC
cd是斜边ab上的中线,de是三角形acd的中线可得AD/AB=1/2AE/AC=1/2还有一个公共角A所以三角形ABC与三角形AD相似.所以角AED=角ACB=90°所以ED⊥ACBD垂直AC所以D
∠B=60duRt△ABC中CD是斜边AB上的中线因为Rt△ABC的性质CD=DB中线=2/1AB=DB所以∠DCB=∠B(等腰三角形)=(180-60)/2=60
根据中位线的定义,EF//BC,且EF=1/2BC,由于AD是中线,则BD=CD,已知BH=CG,所以HD=DG,所以HD+DG=BD+CD=1/2BC,根据平行四边形定理,一组对边平行且相等,就可以
(1)连接DE,因为E是AB中点,AD垂直于BC,所以,DE=BE=AE=CD.因为在三角形EDC中,三线合一,所以DG是高,同时也是中线,所以,G是CE的中点.(2)由(1)可知BE=ED所以,角E
(1)在△ABC中,∵AD是BC边上的高,∴∠ADB=∠ADC=90°.在△ADC中,∵∠ADC=90°,∠C=45°,AD=1,∴DC=AD=1.在△ADB中,∵∠ADB=90°,sinB=1/3,
AF,DE互相平分证明:连接DF,EF∵D是AB中点,F是BC中点∴DF是△ABC的中位线∴DF‖AC同理可得EF‖AB∴四边形ADFE是平行四边形∴AF,DE互相平分
∵△ABC是等边三角形,AD、BE为中线;∴BD=AE=12,∠ABE=∠BAD=30°,∠AEB=∠ADB=90°;∴AD=BE=AB•sin60°=32;在Rt△BOD中,BD=12,∠DBO=3