如图13-1-11,点P为角AOB内一点,分别作出P点关于
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:25:12
1.点A对应的数为:-1-3t;点B对应的数是:3-2t;点P对应的数是:0-2t=-2t;线段PA=-2t-(-1-3t)=t+1;线段PB=3-2t-(-2t)=3.2.PA=PB,则t+1=3,
提示⑴符合条件的P点有4个(图略)⑵经过A(8,0),B(0,6)的直线为y=﹣3/4x+6;BC的垂直平分线为y=2;两条直线相交于点P﹙16/3,2﹚;⑶假设△PBC的面积能等于△ABO的面积,另
/>∠P=180°-1/2∠ABC-1/2∠ACB=180゜-1/2(180゜-∠A)=180-90+1/2∠A=90+1/2∠A
当A=-1,B=3时存在.P-A=B-PP-(-1)=3-PP+P=3-12P=2P=1
(1)p-(-1)=3-pp=1(2)4/9再问:不对吧?
第一题∵∠BPC是△APC的外角∴∠BPC=∠A+∠ACP∵∠BPC=∠CPQ+∠BPQ∠CPQ=∠A=45°∴∠ACP=∠BPQ∴△APC∽△BQPAP/BQ=AC/BPAP/BQ=AC/(√2-A
若存在P使|PA|+|PB|=6,则|x+1|+|x-3|=6,1、若x2、若-1
(1)、因为∠POA=60°所以P点的纵坐标是横坐标根号3倍(直角三角形中30度所对的边是斜边的一半)所以设P点的横坐标为x,则纵坐标就是根号3x,而P点在抛物线上,得根号3x=x2;解得x=根号3或
先假设存在,因为等腰三角形只要有两条边相等就可以,先假设是OP=OQ,此时必然要求OP垂直OQ,显然是不可能.再假设是OQ=PQ,可以证明此时要求这两个互相垂直,进一步可得要求OP垂直AB,P是AB中
(3)设点Q的坐标为(x,y),依题意,.解这个方程组,得到点Q的坐标为.…………1分∵平移的路径长为x+y,∴30≤≤36.…………1分∵点Q的坐标为正整数,∴点Q的坐标为(16,16),(18,1
过D作DG∥EF交AB于G,交AB于H;设EF交AP于I.∵点A和点P关于EF对称∴∠AIF=90∵PG∥EF∴∠AHP=90∴∠APH+∠PAH=90∵∠PAH+∠BAP=90∴∠APH=∠BAP∵
(1)C在第二象限,即点P不在点A或B处因为角OPC=90°,角CPN=90-角OPM所以角OPM=角PCN;因为ΔPCN和ΔPMO都是直角三角形,所以角CPN=角POM.因为线段PM与OB平行,ΔA
1.用正方形ABCD面积-除△APE外的3个小△PB=X-1PC=2-X则△ADE=0.5*1*0.5,△ECP=1/2-X/4,△=X/2-1/2△APE=Y=1-1/4-1/2+X/4-X/2+1
①②③⑤利用平面的基本性质结合特殊四边形的判定与性质求解.①当0<CQ<时,如图(1).在平面AA1D1D内,作AE∥PQ,显然E在棱DD1上,连接EQ,则S是四边形APQE.②当CQ=时
(1)C在第二象限,即点P不在点A或B处因为角OPC=90°,角CPN=90-角OPM所以角OPM=角PCN;因为ΔPCN和ΔPMO都是直角三角形,所以角CPN=角POM.因为线段PM与OB平行,ΔA
⑴设P(p,1/2p),p>0,∴p^2+(1/2p)^2=20,p=4,∴P(4,2).⑵P在Y=K/X上,∴K=8,Y=8/X,①当M在第三象限,根据双曲线关于原点中心对称,M为P关于原点的对称点
设当运动t秒时,线段PQ按逆时针方向旋转60°得线段QD,此时点D恰好落在BC边上,则BP=t,CQ=2t,如图,∴QP=QD,∠PQD=60°,∴∠AQP+∠CQD=120°,又∵△ABC为等边三角
(1)B'(2t+1,0)(2)∵PQ的解析式为x=t∴PC=4-x,∴PQ:2=(4-x):4∴PQ=0.5(4-x)BC=4-(-1)=5当BP=1/2BC时,点B‘与点C重合,故当BP=1/2B
过F作FG⊥AB于G.易证△EFG≌△PAB,得EF=PA=13cm
点P′的坐标为(b,a).理由如下:分别作PA⊥y轴于A,P′B⊥x轴于B,连结OP、OP′,如图,∵点P与P′关于l对称,∴OP=OP′,∠1=∠2,∵l是第一、三象限的角平分线,∴∠1+∠3=∠2