如图13-1-11,点P为角AOB内一点,分别作出P点关于

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:25:12
如图13-1-11,点P为角AOB内一点,分别作出P点关于
如图 点o是数轴的原点 点A和点B对应的数分别是-1和3,P为数轴上的动点,且点P对应的数为X.

1.点A对应的数为:-1-3t;点B对应的数是:3-2t;点P对应的数是:0-2t=-2t;线段PA=-2t-(-1-3t)=t+1;线段PB=3-2t-(-2t)=3.2.PA=PB,则t+1=3,

如图,已知点A(8,0),B(0,6)C(0,-2),动点p在直线AB上(1)动点P在什么位置时,以点P、B、C为顶点的

提示⑴符合条件的P点有4个(图略)⑵经过A(8,0),B(0,6)的直线为y=﹣3/4x+6;BC的垂直平分线为y=2;两条直线相交于点P﹙16/3,2﹚;⑶假设△PBC的面积能等于△ABO的面积,另

如图,若P点为∠ABC和∠ACB的角平分线的交点,试说明∠P=90°+1/2∠A

/>∠P=180°-1/2∠ABC-1/2∠ACB=180゜-1/2(180゜-∠A)=180-90+1/2∠A=90+1/2∠A

如图,数轴上两点A、B对应的数分别为-1、3,数轴上有一动点P,

(1)p-(-1)=3-pp=1(2)4/9再问:不对吧?

如图,已知Rt△ABC,∠ACB=90°,AC=BC=1,点P在斜边AB上移动(点P不与点A、B重合),以点P为顶点作∠

第一题∵∠BPC是△APC的外角∴∠BPC=∠A+∠ACP∵∠BPC=∠CPQ+∠BPQ∠CPQ=∠A=45°∴∠ACP=∠BPQ∴△APC∽△BQPAP/BQ=AC/BPAP/BQ=AC/(√2-A

如图,在平面直角坐标系xOy中,点P位抛物线y=x2上一动点,点A的坐标为(1,0).

(1)、因为∠POA=60°所以P点的纵坐标是横坐标根号3倍(直角三角形中30度所对的边是斜边的一半)所以设P点的横坐标为x,则纵坐标就是根号3x,而P点在抛物线上,得根号3x=x2;解得x=根号3或

如图,直线y=-x+1与x轴,y轴交于B,A两点,动点P动点P在线段AB上移动(不与A,B重合)以P为顶点作

先假设存在,因为等腰三角形只要有两条边相等就可以,先假设是OP=OQ,此时必然要求OP垂直OQ,显然是不可能.再假设是OQ=PQ,可以证明此时要求这两个互相垂直,进一步可得要求OP垂直AB,P是AB中

如图,以O为原点的直角坐标系中,A 点的坐标为(0,1),直线x=1交x轴于点B,P 为线段AB上一动点,作直线PC⊥P

(3)设点Q的坐标为(x,y),依题意,.解这个方程组,得到点Q的坐标为.…………1分∵平移的路径长为x+y,∴30≤≤36.…………1分∵点Q的坐标为正整数,∴点Q的坐标为(16,16),(18,1

四边形的性质如图,正方形ABCD中,AP=13cm,点A是点P关于EF为对称轴的对称点,求EF的长.

过D作DG∥EF交AB于G,交AB于H;设EF交AP于I.∵点A和点P关于EF对称∴∠AIF=90∵PG∥EF∴∠AHP=90∴∠APH+∠PAH=90∵∠PAH+∠BAP=90∴∠APH=∠BAP∵

如图,以O为原点的直角坐标系中,A 点的坐标为(0,1),直线x=-1交x轴于点B,P为线段AB上一动点,作直线PC⊥P

(1)C在第二象限,即点P不在点A或B处因为角OPC=90°,角CPN=90-角OPM所以角OPM=角PCN;因为ΔPCN和ΔPMO都是直角三角形,所以角CPN=角POM.因为线段PM与OB平行,ΔA

如图,已知正方形ABCD的边长为1,E为CD边的中点,P为ABCD边上的一动点.动点P从A点出发,沿A---B---C-

1.用正方形ABCD面积-除△APE外的3个小△PB=X-1PC=2-X则△ADE=0.5*1*0.5,△ECP=1/2-X/4,△=X/2-1/2△APE=Y=1-1/4-1/2+X/4-X/2+1

如图,正方体ABCD A 1 B 1 C 1 D 1 的棱长为1,P为BC的中点,Q为线段CC 1 上的动点,过点A,P

①②③⑤利用平面的基本性质结合特殊四边形的判定与性质求解.①当0<CQ<时,如图(1).在平面AA1D1D内,作AE∥PQ,显然E在棱DD1上,连接EQ,则S是四边形APQE.②当CQ=时

如图,以o为原点的直角坐标系中,a点的坐标为(0,1),直线x=1交x轴于点b,p为线段ab上一动点,作直线pc垂直于p

(1)C在第二象限,即点P不在点A或B处因为角OPC=90°,角CPN=90-角OPM所以角OPM=角PCN;因为ΔPCN和ΔPMO都是直角三角形,所以角CPN=角POM.因为线段PM与OB平行,ΔA

如图,在平面直角坐标系xoy内,点P在直线y=1/2x上(点P在第一象限),过点P作PA⊥x轴,垂足为点A,OP=2根号

⑴设P(p,1/2p),p>0,∴p^2+(1/2p)^2=20,p=4,∴P(4,2).⑵P在Y=K/X上,∴K=8,Y=8/X,①当M在第三象限,根据双曲线关于原点中心对称,M为P关于原点的对称点

如图,已知等边三角形ABC的边长为10,点P、Q分别为边AB、AC上的一个动点,点P从点B出发以1cm/s的速度向点A运

设当运动t秒时,线段PQ按逆时针方向旋转60°得线段QD,此时点D恰好落在BC边上,则BP=t,CQ=2t,如图,∴QP=QD,∠PQD=60°,∴∠AQP+∠CQD=120°,又∵△ABC为等边三角

如图,在平面直角坐标系中,点A、B、C的坐标分别为(0,2)、(-1,0)、(4,0)点P是线段OC上的一动点(点P与点

(1)B'(2t+1,0)(2)∵PQ的解析式为x=t∴PC=4-x,∴PQ:2=(4-x):4∴PQ=0.5(4-x)BC=4-(-1)=5当BP=1/2BC时,点B‘与点C重合,故当BP=1/2B

如图,已知l是第一、三象限的角平分线,点P与P′关于l对称,已知点P的坐标为(a,b),猜想P′的坐标是什么?并说明你猜

点P′的坐标为(b,a).理由如下:分别作PA⊥y轴于A,P′B⊥x轴于B,连结OP、OP′,如图,∵点P与P′关于l对称,∴OP=OP′,∠1=∠2,∵l是第一、三象限的角平分线,∴∠1+∠3=∠2