如图2,若AM为ABC的中线,反向延长AM交DE于点N,求证AN垂直DE
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 12:16:17
证明:过A作CB平行线,交CD延长线于F∵CN=MN∴∠1=∠3=∠4(等边对等角、对顶角)又 AF//CB∴∠1=∠F(内错角相等)∴∠4=∠F∴AM=AF(等角对等边)∵CD是△ABC的
分别过BC做垂直AM的线交AM分别为D,E因为BD垂直AM角BDM=90因为CE垂直AM角CEM=90又因为角DMB=EMC(对顶角)且BM=DM所以根据角角边三角形BDM=CEM所以BD=CD
过A作CB平行线,交CD延长线于F,使得AF//CB因为CN=MN所以角MCN=角CMN=角AMD又因为AF//CB由两直线平行,内错角相等角MCN=角AFD故角AFD=角AMD所以AM=AF下面再证
1题AB²+AC²=2AE²+BE²+EC²=2AE²+(BM+EM)²+(MC-EM)²(mc=bm)=2AE&sup
解由E是AC的中点,F是AD的中点即FE//CD所以SΔAEF/SΔADC=(AE/AC)²=(1/2)²=1/4则SΔADC=4SΔAEF=4又有CD是ΔABC的中线即SΔABC
证明:在直角三角形ABD中,由勾股定理得,AB^2=BD^2+AD^2,(1)在直角三角形ACD中,由勾股定理得,AC^2=CD^2+AD^2,(2)(1)+(2),得,AB^2+AC^2=BD^2+
证明:∵AM是BC边上的中线∴BM=CM∵在△ABM中:AM+BM>AB;在△ACM中:AM+CM>AC∴2AM+BM+CM>AB+AC∴2AM+2BM>AB+AC∴AM>1/2(AB+AC)-BM这
(2)∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACD+∠DCB=∠DCB+∠BCE∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴AD=BE,
延长AM至N,使MN=AM,连结BN,BM=CM,MN=AM,AN,AN=2AM,∴AM
通过平行全等,再答:发图给你再问:CE是自己补的再答:因为BD等于DC,AD等于DE,且角ADB=角CDE。所以三角形ABD全等三角形CDE。所以CE等于AB。在三角形ACE中,根据两边之和大于第三边
做BH//AC,CH//AB,BH与CH交于H点,ABHC为平行四边形,连接HM,因M是BC的中点,A、M、H共线,AM=AH/2.因AB//CH,所以角BAC+角ACH=180度;角BAE=角CAG
(1)60(2)∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACD+∠DCB=∠DCB+∠BCE∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴AD=
三角形ABM中由余弦定理|AM|^2+|BM|^2-2|AM|*|BM|cosα=|AB|^2①三角形ACM中由余弦定理|AM|^2+|CM|^2-2|AM|*|CM|cos(π-α)=|AC|^2|
问题呢?没写出来.
根据三角形两边之和大于第三边,两边之差小于第三边,可知AM+MB>AB (1)MC-AM<AC (2)(1)-(2),得(AM+MB)-(MC-AM)>AB-AC即 2AM>AB-AC所以 A
∵EG‖BC∴△AEG≌△ABC又∵AE:AB=1/2∴AG:AC=1/2即G是AC中点所以DG‖AB∴△CDG≌△CAB∴S△CDG:S△CAB=(CD:CB)²=(1/2)²=
2,设CD⊥AM,1/2×AB×CD=40,所以1/2×AM×CD=20,也就是AMC面积20..3,1/2×AM×CD=12CD=4所以AM=6AB=12
作AE∥BC交CD延长线于E,∴∠EAD=∠CBD,∠E=MCN∠ADE=∠BDC,且AD=BD∴△ADE≌△BDC∴AE=BC,又∵CN=MN∴∠MCN=∠CMN,又∵∠AME=∠CMN∴∠AME=
延长AM到P,使MP=AM,连接BP,延长DN到Q,使QN=DN,连接EQ,∵BM=CM,∠ANC=∠BMP,∴ΔAMC≌ΔPMB,∴AC=BP,∠MAC=∠P,同理DF=EQ,∠NDF=∠Q,∵AB
AB^2+AC^2=BE^2+AE^2+CE^2+AE^2=BE^2+CE^2+2AE^2=(BM-EM)^2+(BM+EM)^2+2AE^2=2BM^2+2EM^2+2AE^2AM^2+BM^2=E