如图46-2已知直线y=-四分之三x加3分别交x轴,y轴
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 07:12:00
(1)当⊙P与x轴相切时,P点的纵坐标为2或-2.∴2=2x-1,或-2=2x-1;∴x=32,或x=−12.∴P点的坐标为(32,2)或(−12,−2).(2)当⊙P与y轴相切时,P点的横坐标2或-
过点(2,2)(-2,0)带入可得2=2k+b①0=-2k+b②①+②得2b=2b=1k=0.5解析式y=0.5x+1当x=4时y=3再问:①+②?再答:2=2k+b.........①0=-2k+b
1、圆心到切线距离等于半径到x轴距离=|y|=|2x-1|=22x-1=±2x=-1/2,3/2所以P(-1/2,-2),(3/2,2)2、到y轴距离=|x|=2x=±2所以P(-2,-5),(2,3
1)S(△AOB)=OA*OB/2=2△AOB被分成的两部分面积相等OC=1高=2=OAy=kx+b(k≠0)经过点A(0,2)k=-2b=22)△AOB被分成的两部分面积比为1:5OC=1,S△=2
令x=0,得y=k;令y=0,得x=-k/2.即直线为y=2x+k与x轴、y轴的交点分别为(-k/2,0)和(0,k),由已知得1/2*∣-k/2∣*∣k∣=3/4.解方程∣k∣²=3,所以
洛逸夏,你好:所求圆与直线L2相切于点P(3,-2),则圆心在过点P且垂直于L2的直线m上直线m的方程为y+2=x-3,即x-y-5=0.将直线m与直线L1的方程联立,解得圆心坐标为C(1,-4)半径
(1)由A点的坐标为(3,4)和直线方程y=x+m求得m=1;由直线方程y=x+1和B横坐标为0(B在y轴上)知B点纵坐标为1;设二次函数为y=ax^2+bx+1,将A、B二点坐标带入得到二个一次方程
(2^21,0)y=√3x,说明斜率为√3=tan(60°)或者OM=2,所以MN=2√3,所以ON=4,OM=ON/2,所以∠nom得60°
因为l1与l2交于点A,所以把A点带入l2得,b=1,然后再把A点带入l1,就可以把k算出来,k=1,所以直线l1:y=x+1因为直线1与y交于b点,所以把x=0带入l1,就算出B为(0,1)所以面积
∵直线l的解析式为:y=33x,∴l与x轴的夹角为30°,∵AB∥x轴,∴∠ABO=30°,∵OA=1,∴AB=3,∵A1B⊥l,∴∠ABA1=60°,∴AA1=3,∴A1(0,4),同理可得A2(0
把x=1代入y=3x得y=3,∴B1的坐标为(1,3),∵△A1B1C1为等边三角形,∴A1C1=A1B1=3,∠B1A1C1=60°,∴A1A2=3cos30°=32,∴A2的坐标为(52,0),把
∵l:y=33x,∴l与x轴的夹角为30°,∵AB∥x轴,∴∠ABO=30°,∵OA=1,∴AB=3,∵A1B⊥l,∴∠ABA1=60°,∴AA1=3,∴A1O(0,4),同理可得A2(0,16),…
∵直线l的解析式为;y=33x,∴l与x轴的夹角为30°,∵AB∥x轴,∴∠ABO=30°,∵OA=1,∴OB=2,∴AB=3,∵A1B⊥l,∴∠ABA1=60°,∴A1O=4,∴A1(0,4),同理
四边形AMBN的面积=MN*(AM+BN)/2=(X1-X2)*(y1-y2)/2(1)因为y=(1-k)x+k与y=6/x相交,所以得出(1-k)x^2+kx-6=0的两根为x1x2,接着y1=6/
由题可知:B点的坐标为(2,0),则直线的解析式为:Y=-3/4X+3/2,抛物线的解析式为:Y=-3/4X方+3且C点的坐标为(-1,9/4),BC=15/4AM=t,BN=2t,所以BM=4-t,
联立x^2=-4/k所以x1x2=4/kx1+x2=02x1y2-7x2y1=2x1*kx2-7x2*kx1=(-5k)*x1x2=(-5k)*(4/k)=-20k(x1^2+x2^2)=k[(x1+
由y=-√3x+2√3得:A(2,0),B(0,2√3)三角形DAB沿直线DA折叠所以AB=AC,DB=DCAB=√〔(2√3)^2+2^2〕=4AC=4,所以C点的坐标为(4,0)设D点的坐标为(0
(Ⅰ)设圆心为M(a,b),半径为r,依题意,b=-4a.(2分)设直线l2的斜率k2=-1,过P,C两点的直线斜率kPC,因PC⊥l2,故kPC×k2=-1,∴kPC=−2−(−4a)3−a=1,(
(1)A点位y=x-2与x轴的焦点,所以A(x,0),代入0=x-2,x=2,所以A(2,0);B点为y=x-2与y轴的焦点,则B(0,y),代入y=0-2,y=-2,则B(0,-2)(2)已知y=k