如图7-1-21点e是ab上的一点,图中共有多少对内错角
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 03:58:38
(1)①②⇒③,正确;①③⇒②,错误,不符合三角形的判定;②③⇒①,正确.(2)先证①②⇒③.如图.∵AD平分∠BAC,DE⊥AB,DF⊥AC,AD=AD,∴Rt△ADE≌Rt△ADF.∴DE=DF,
1.因为AD=BE=CF所以AF=DB=CE因为三角形ABC是等边三角形所以角A=角B=角C三角形ADF全等于三角形BDE全等于三角形CEF所以DF=DE=EF所以三角形DEF是等边三角形再问:那等你
(1)∵OA过圆心且CD⊥AB∴弧AC=弧AD∴∠F=∠ACD又∵∠CAF=∠CAF∴△ACH∽△AFC(2)连接BC∵AD为直径∴∠ACB=90°又∵CE⊥AB∴AE×AB=AC²∵△AC
“zyl9529”:答:DE=FG;BGEF的周长=4cm×2=8cm证明:延长FE交DC于H.AC是正方形ABCD的对角线,所以,AF=FE;;EG=EH;;EG⊥BC;;EF⊥AB;;所以FE=B
(1)设AB=x,∵3AC=2AB,∴AC=23AB=23x,BC=AB-AC=x-23x=13x,∵E是CB的中点,∴BE=12BC=16x,∵D是AB的中点,∴DB=12AB=x2,故DE=DB-
话说第一题.很简单.相似三角形概念.(1)点A和点F同在圆上,且都对应弦BC,所以角A=角F,CD垂直于AB,那么角DCB=角A,所以角DCB=角F,因此,三角形FCB相似于三角形CBG,所以BC/B
(1)证明:∵∠C=∠P又∵∠1=∠C∴∠1=∠P∴CB∥PD;(2)连接AC∵AB为⊙O的直径,∴∠ACB=90°又∵CD⊥AB,∴BC=BD,∴∠P=∠CAB,又∵sin∠P=35,∴sin∠CA
证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠EAC,在△ABE和△ACE中,AB=AC∠BAE=∠EACAE=AE,∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵∠BAC=45°,
在ΔABD与ΔACD中,AB=AC,AD=AD,BD=CD,∴ΔABD≌ΔACD,∴∠DAE=∠CAE,在ΔABE与ΔACE中,AB=AC,∠BAE=∠CAE,AE=AE,∴ΔABE≌ΔACE,∴BE
(1)△DEF是等边三角形.证明如下:∵△ABC是等边三角形,∴∠A=∠B=∠C,AB=BC=CA,又∵AD=BE=CF,∴DB=EC=FA,(2分)∴△ADF≌△BED≌△CFE,(3分)∴DF=D
第二问只能用公式tan2α=(2tanα)/(1-tan²α),算出来是1/3,抱歉,实在是不会用初中的方法.第三问由三角形BDE与三角形BAC相似列式,BD/AB=DE/AC,DE=4x/
证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠EAC,在△ABE和△ACE中,AB=AC∠BAE=∠EACAE=AE,∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵∠BAC=45°,
(1)已知:如图,D、E、F分别是BC、CA、AB上的点,D//AB,DF//AC,试说明∠FOE=∠A∵DE//AB(已知)∴∠A+∠AED=180°(两直线平行,同旁内角互补)∵DF//AC(已知
延长FD到G,使得DG=DE.然后连接MG.那么因为∠ADE=∠CDF,∠ADG与∠CDF是对顶角.所以∠ADE=∠ADG.然后有他们的两个补角∠EDM=∠GDM,然后对于三角形EDM与三角形GDM由
(1)证明:∵∠DEF=45°,∴∠DFE=90°-∠DEF=45°.∴∠DFE=∠DEF.∴DE=DF.又∵AD=DC,∴AE=FC.∵AB是圆B的半径,AD⊥AB,∴AD切圆B于点A.同理:CD切
在Rt△ABC中∵角B=90∴AC=√(AB^2+BC^2)=√(2^2+1^2)=√5∵CD=CB,AE=AD∴AE=AD=AC-CD=AC-BC=√5-1其实到这里已经可以说明是黄金分割点,不过还
1、先证三角形adf和三角形bde和三角形efc群的.
做CF垂直AN,因为角B=90,所以CF=AB,因为角CFD+角FCD=CDA,所以角EAD=角FCD,三角形DCF相似三角形AED,CF/CD=AD/DEAB/CD=AD/DEDE/DC=AD/DB
FB=2DF所以DF=1/3DB以为OB=a所以AB=2aEF=EC+CD+DF=1/3AC+b+1/3DB=b+1/3(AC+DB)=b+1/3(2a-b)=2/3(a+b)
然后呢再问:且AD=31,DB=29,AE=了30,EC=32,找出角1角2角3角4中相等的角再答:等一下我算一哈再问:嗯,谢谢再答:角1234分别在哪里啊,再答:你截图给我看看初一的题目吧,再问:在