如图9延长园O的直径AB至点C,使得BC=二分之一AB

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 21:11:04
如图9延长园O的直径AB至点C,使得BC=二分之一AB
如图,AB是⊙O的直径,P为AB延长线上任意一点,C为半圆ACB的中点,PD切⊙O于点D,连接CD交AB于点E.

证明:(1)连接OC、OD,∵C是半圆ACB的中点∴∠COA=∠COB∵∠COA+∠COB=180°∴∠COA=∠COB=90°∴OD⊥PD,OC⊥AB.∴∠PDE=90°-∠ODE,∠PED=∠CE

如图 ab是圆o的直径,点C是BA延长线上一点,CD切圆O于D点,弦DE平行CB,Q是AB上一动点,CA=1,CD是圆O

当Q从A向B运动的过程中,图中阴影部分的面积不发生变化 连结0D、OE.∵DE‖CB,∴S△QDE=S△ODE(同底等高)∴S阴影=S扇形ODE设圆的半径为r,由切割线定理,CD&s

如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切与点D,弦DF⊥AB于点E,线段CD=10,连接BD.

(1)证明:连接OD.∵直线CD与⊙O相切于点D,∴OD⊥CD,∠CDO=90°,∠CDE+∠ODE=90°.又∵DF⊥AB,∴∠DEO=∠DEC=90°.∴∠EOD+∠ODE=90°,∴∠CDE=∠

已知,如图,ab是○o的直径,点p为ab延长线上一点,pc为○o切线,c为切点,bd⊥pc,

(1)连接OC,因为角DB0=角COP,又因为角COP=2倍角CBO,所以角DBC=角CBO.可以证明三角形DBC与三角形CBA相似,可以得到DB:BC=CB:BA,=>BC^2=BD*BA(2)连接

如图,AB为⊙O的直径,P为BA的延长线上一点,PC切⊙O于点C,PA=4,PC=8,求⊙O的直径AB的长

设半径为x,连oc在Rt三角形opc中x^2+8^2=(x+4)^2解,得x=6所以ab=2x=12

如图,A,B,C三点在圆O上,CE是圆O的直径,CD⊥AB于D,延长CD交园O于F,连接AE,BF.

证明:1、∵直径CE∴∠CAE=90∴∠ACE+∠AEC=90∵∠AEC、∠ABC所对应圆弧都为劣弧AC∴∠AEC=∠ABC∴∠ACE+∠ABC=90∵CD⊥AB∴∠BCF+∠ABC=90∴∠ACE=

如图,AB是圆O的直径,点D在AB的延长线上,BD=OB,点C在圆上,∠CAB=30°

连接OC∠CAB=30°OA=OC所以∠COD=60°又OB=BD所以OD=2OC所以OC垂直于CD所以DC是圆O的切线

如图,AB为圆O的直径,点C为弧AB的中点,弦CE交AB于点F,D为AB延长线上一点,

连接OC.AB为直径,C为弧AB的中点,则:OC⊥AB,OC=AO=OB=3;BF=OB-OF=2.设BD=X,则DE=DF=2+X.DE为圆的切线,则:DE²=BD*AD,(2+X)

如图,已知AB是圆O的直径,点D在AB的延长线上,且AC=CD,点C在圆O上,角CAB= 30度,求证:DC是圆O的切线

∵AC=CD∴∠CAB=∠CDB=30°连接OC∵OA=OC∴∠CAB=∠OCA=30°∴∠COD=60°∴∠OCD=90°C在圆O上∴DC是圆O的切线

如图AB是圆O的直径,点P是延长线上一点,PD切圆O于点C,BC和AD的延长线相交于点E,且AD⊥PD.(1)求证:AB

1、连接OC,因PD于圆相切,则OC垂直PD;又因AD垂直PD,则OC平行AD;\x0d在三角形ABE中,O是AB中点,且OC平行AE,则OC是AE的中位线,则OC=AE/2;\x0d又因OC=AB/

如图,AB为圆O的直径,C是圆O上一点,点D在AB的延长线上,且角DCB=角A

(2009•路北区三模)如图:AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=∠A.(1)求证:CD是⊙O的切线;(2)如果:∠D=30°,BD=10,求:⊙O的半径.&

如图 ab为圆o的直径 c为圆o上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分角DAB,延长AB交DC于点E

如果满意记得采纳哦!你的好评是我前进的动力.(*^__^*) 嘻嘻……我在沙漠中喝着可口可乐,唱着卡拉ok,骑着狮子赶着蚂蚁,手中拿着键盘为你答题!

如图,AB是圆O的直径,点C在AB的延长线上,CD与圆O相切于点D若角C等于18度,则角CDA?

连接OD.CD与圆O切于D,则OD垂直CD,∠COD=90°-∠C=72°.∵OD=OA.∴∠ADO=∠DAO=(1/2)∠COD=36°.所以,∠CDA=∠ADO+∠CDO=126°.

如图,AB是⊙O的直径,点D在AB的延长线上,且BD=OB,点C在⊙O上,∠CAB=30°.求证:DC是⊙O的切线.

证明:连接OC、BC,∵AB是⊙O的直径,∴∠ACB=90°.∵∠CAB=30°,∴∠ABC=60°.∵OB=OC,∴△OBC为等边三角形,∴BC=OB=BD,△BCD为等腰三角形,∠CBD=120°

(2014•吴中区一模)已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥AC于点D,过点C作⊙O的切线,交OD的延长

(1)连接OC,∵OD⊥AC,OC=OA,∴∠AOD=∠COD.在△AOE和△COE中OA=O C∠AOE=∠COEOE=OE∴Rt△AOE≌Rt△COE(SAS),∴∠EAO=∠ECO.又

如图,圆o的直径AB等于6厘米,P是AB延长线上的一点,过P作圆o的切线,切点为c,连接AC,若点P在AB的延长线上运动

∠CMP的大小不变,∠CMP=45°连接OC,交PM于D∵PC是⊙O的切线∴∠OCP=90°∵PM平分∠APC∴∠MPC=1/2∠APC∴∠CDP=90°-1/2∠APC∵∠CMP=∠CDP-∠ACO

如图,AB是圆O的直径,P为AB延长线上任意一点,C为半圆ACB的中点,PD切圆O于点D,连接CD交AB于点E 求证:P

(1)连接OC∵PD切圆O于点D∴OD⊥PD∵C为半圆ABC的中点∴OC⊥AB∵OC=OD∴∠OCE=∠ODE∵∠OCE+∠OEC=90°∠ODE+∠PDE=90°∴∠OEC=∠PDE又∠OEC=∠D