如图ab是圆o的直径点ACD在圆O上

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 12:41:08
如图ab是圆o的直径点ACD在圆O上
如图,AB为圆O的直径,C,D为圆O的点,且OC平分角ACD,CF平分∠ACD,CF⊥DB于F,证明CF为圆O切线.

如图,AB为圆O的直径,C,D为圆O的点,且OC平分角ACD,CF⊥DB于F,证明CF为圆O切线. 连接OD∵OA=OC=OD∴∠OAC=∠BAC=∠OCA∠ODC=∠OCD∵OC平分∠AC

如图,AB是半圆O 的直径,点c是圆O上一点,连接ac,ab

的延长线上取一点E,连接EB,使∠OEB=∠ABC.(1)求证:BE是⊙O的切线(1)证明:∵AB是半圆O的直径,∴∠ACB=90°,∵ODAC,∴∠EDB=90°

如图,已知AB是圆O的直径,AC是弦,CD切圆O于点C,交AB的延长线于点D,〈ACD=120度,BD=10

(1)设AB的中点为O为圆心连接CO∵CD为⊙O的切线∴〈COD=90度〈ACO=30度又∵AO=CO∴〈CAO=〈ACO=30度则〈AOC=120〈CDA=120-90=30∴〈CAD=〈CDACA

如图,已知AB是⊙O的直径,AC是弦,CD切⊙O于点C,交AB的延长线于点D,∠ACD=120°,BD=10.

(1)证明:连接OC.∵DC切⊙O于点C,∴∠OCD=90°.又∵∠ACD=120°,∴∠ACO=∠ACD-∠OCD=120°-90°=30°.∵OC=OA,∴∠A=∠ACO=30°,∴∠COD=60

有关圆周角如图,A、B、C、三点在圆O上,CD是圆O的直径,CD⊥AB于D(1)求证:∠ACD=∠BCE;(2)延长CD

此题有两个地方的字母打错了.正确的应该是:如图,A、B、C、三点在圆O上,CE是圆O的直径,CD⊥AB于D(1)求证:∠ACD=∠BCE;(2)延长CD交圆O于F,连接AE、BF,求证:AE=BF证明

如图,A、B、C三点在圆O上,CE是圆O的直径,CD⊥AB于D,延长CD交圆O于F,连接AE、BF.求证:(1)∠ACD

1、∠ACE+∠AEC=90°∠DCB+∠ABC=90°∠AEC=∠ABC所以∠ACE=∠DCB又因为∠ACE=∠ACF+∠FCE∠DCB=∠BCE+∠ECF所以∠ACD=∠BCE2、因为∠ACE=∠

如图,AB是圆O的直径,点D在AB的延长线上,BD=OB,点C在圆上,∠CAB=30°

连接OC∠CAB=30°OA=OC所以∠COD=60°又OB=BD所以OD=2OC所以OC垂直于CD所以DC是圆O的切线

如图,ABC是圆O上三点,CD⊥AB,垂足为点D,BE是圆O直径,求证∠EBC=∠ACD

连接CE∵BE是圆心,∴∠BCE=90°=∠ADC又∵∠DAC=∠ECB(圆周角定理,即同弧所对的圆周角相等)∴∠EBC=∠ACD(在△ADC和△ECB中)

如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°,CD是⊙O的切线:若⊙O的半径为2

连接OC,∵AC=CD,∠ACD=120°,∴∠CAD=∠D=30°,∵DC切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∴∠COD=60°,在Rt△OCD中,∠OCD=90°,∠D=30°,OC=2

如图,AB是圆O的直径,点P是弧AB的中点

先自己画个图,标准点,再看题目

如图,AB是圆O的直径,弦CD垂直平分半径OB,垂直为点E.求证:三角形ACD是正三角形

连接AC,BC,弦CD垂直平分半径OB,根据垂直平分线定理,BC=OC=AB/2;AB是圆O的直径,∠ACB=90°=∠AEC,S△ABC=AB*CE/2=AC*BC/2AB*CE=AC*OCAB*C

如图9,A,B,C是圆上的3点,CD垂直于AB,垂足为点D,BE是圆O的直径,求证:角EBC=角ACD

连接CE∵BE是圆心,∴∠BCE=90°=∠ADC又∵∠DAC=∠ECB(圆周角定理,即同弧所对的圆周角相等)∴∠EBC=∠ACD(在△ADC和△ECB中)

如图,已知AB是圆心O的直径,点D在AB的延长线上,DC是圆心O的切线,切点为C,已知角ACD=120度,BD-5cm,

∠ACD=120°∠OCD=90°△ABC为直角三角形AB为直径∠ACB=90°∠ACO=∠ACD-∠ACB=30°∠BCD=30°∠CAB=∠ACO=30°∠D=180°-∠CAD-∠DCA=180

如图,AB是圆O的直径,AC是弦,∠ACD=1/2∠AOC

所以∠AOC=2∠ACD.证毕.如图,AB是圆O的直径,AC是弦,CD是圆O所以∠AOC=2∠ACD.证毕.赞同0|评论2011-12-416:57热心网友.

如图,AB为圆O的直径,C是圆O上一点,点D在AB的延长线上,且角DCB=角A

(2009•路北区三模)如图:AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=∠A.(1)求证:CD是⊙O的切线;(2)如果:∠D=30°,BD=10,求:⊙O的半径.&

如图,在△ABC中,以AB为直径的圆O交BC于点D,连接AD,请添加一个条件,使△ABD全等于△ACD,并说明全等的理由

条件:BD=CD证明:∵AB为直径∴∠ADB=∠ADC=90°∵AD=DABD=CD∴△ABD全等于△ACD(边角边)回答得好要采纳哦

如图,AB是圆O的直径,CD是圆o的弦,若角BAD等于24度,则角ACD的大小为多少~

 再问:能在详细一点吗再答:还不详细?再答: 再答:这是定理,你应该很清楚再答:给个采纳呗……

如图已知AB是圆O的直径C是圆O上一点CD⊥AB求证1∠ACD=∠F 2AC

1、连接BC,则∠ACB=90°,∠ABC=∠F,∵∠ACD+∠CAD=90°,∠CAD+∠ABC=90°,∴∠ACD=∠ABC.∴∠ACD=∠F.2、由(1)得出的∠ACD=∠F,又∵∠CAG=∠F