如图adbe分别是三角形abc的中线和角平分线ad垂直于bead等于be等于六,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:15:57
这道题不是你看错打错就是你没有写完.注意:AI与BI中的“I"重复啦.还有CE中的E又从哪儿跑出来的.
(1)三角形ABM是相似于三角形DEN的,证明如下由三角形ABC~三角形DEF,故角ABC=角DEF又AM,DN分别是三角形ABC和三角形DEF的高,故角AMB=角DNE=90度三角形ABM与三角形D
知识点:三角形的中线平分三角形的面积.SΔBDF=1/2SΔBDE=1/2(1/2SΔBDA)=1/2[1/2(SΔABC]=1/8SΔABC,∴SΔABC=8SΔBDF=48.再答:能帮到你,我也高
证明的是小于等于4分之5吧因为,∠1=∠2=∠3则,△ABC∽△EBD∽△ADC相似比=周长的比=m:m1:m2设,AC/BC=k则,m2/m=AC/BC=DC/AC=k解得,DC=kAC又,DC=B
方法一:∠DAE=1/2*(∠C-∠B)90°=∠DAE+∠AED=∠DAE+∠EAC+∠C=∠DAE+1/2*∠BAC+∠C=∠DAE+1/2*(180°-∠A+∠C)+∠C整理得∠DAC=1/2(
很简单∠FAB=∠CAB/2,∠FBA=∠CBA/2所以∠FAB+∠FBA=(∠BAC+∠ABC)/2=45°所以∠AFB=135°
∵AD为△ABC的中线,AE是△ABD的中线,∴BD=CD,BE=DE,∴BE=1/2BD,BD=1/2BC;又∵AB=BD,∴BE=1/2AB,AB=1/2BC,∴BE/AB=AB/BC=1/2,∠
如图,∵∠AED=90°,AG=DG,∴EG=1/2AD(直角三角形斜边中线等于斜边的一半)同理,FH=1/2BC,又∵AD=BC,∴EG=FH∵AD∥BC,∴∠ADB=∠CBD,又∵∠AED=∠CF
过点P作PM⊥AB的延长线,垂足为M,PQ⊥BC,垂足为QPN⊥AC的延长线,垂足为N∵∠MBP=∠QBP,∠PCQ=∠PCN∴PM=PQ,PQ=PN∴PM=PN∴AP平分∠BAC
如图,线段MN是△ABC的中位线,CD、CE分别平分△ABC的内角∠ACB和外角∠ACF,CD、CE分别交直线MN于点D、E.(1)判断四边形ADCE的形状,并说明理由;(2)当四边形ADCE是正方形
∵CD为角ACB的内角平分线,所以∴∠BCD=∠ACD且∠ACD=∠ECD∴∠BCD=∠ECD∵DF‖BC∴∠EDC=∠DCB∴∠EDC=∠ECD∴ED=EC∵CF三角形ABC的外角平分线∴∠ECF=
不是连接AP因为BP平分
角B+角C=180-角A=180-xBDCE为角平分线角DBC+角ECB=1/2(角B+角C)=90-x/2角BPC=180-角DBC-角ECB=90+x/2望采纳
证明△AGC和△ADB全等.(1)△CFA和△ABE有2个公共角(∠BAC和∠CAB,∠AFC和∠AEB),所以∠ABE=∠ACG.又因为BD=AC,CG=AB.△AGC和△ADB全等(SAS).所以
AB=AC,so:abc是等边D为BC的中点so:AD垂直于BCAE平行BC,ED平行ACso:AEDC为平行四边形D为BC的中点so:AE=CD=DBAE=DB,AD垂直于BC,AE平行BDso四边
解:设AE与CD交于M.∠1:∠2:∠3=28:5:3;则∠BAE=∠1=[28/(28+5+3)]*180度=140度.∴∠CAM=360°-∠1-∠BAE=80°.∵∠E=∠3=∠ACM;∠EMD