如图AO BO CO DO分别是四边形ABCD的四个内角的平分线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:28:18
易证三角形AHE,BEF,CFG,DGH全等(SAS),所以EH=FE=GF=HG,所以EFGH是菱形,又角AEH=角DHG,而角AEH+角AHE=90度,所以角AHE+角DHG=90度,所以角EHG
四边形MENF为菱形 ∵M,N为AD与BC中点∴BM=CM 又∵E,F为BM与CM中点∴EN=EM(直角三角形斜边中线长度等于斜边的一半) ∴EN=EM=FM=FN ∴四边形MENF为菱形
将Ac和BD平移到一点其所成锐角为3o度此题可转化成EH和HG的夹角为30度
四边形ABCD梯形ABCD这怎么理解1、只要AB=CD,中间的四边形EGFH就是菱形2、既然是梯形,那么GH=1/2(BC-AD)=h,即菱形的两条对角线相等,故为正方形再问:要证明小明的那个猜想,请
已知:平行四边形EFGH的顶点分别在矩形ABCD上,且EF∥AC,FG∥BD.求证:平行四边形EFGH的周长=2AC解法一(没有用到相似):如图所示,AC交BD于O,EH交AC于M,EF交BD于N,∵
是连接对角线利用中位线定理可证
∵AE平分∠BAD,BF平分∠ABC,∠BAD+∠ABC=180°(AD∥BC)∴∠BAE+∠ABF=90°∴AE⊥BF同理可证BF⊥CF,CF⊥DE,DE⊥AE∴四边形EHFG为矩形
四边形MMPNQ是平行四边形证明:因为四边形ABCD是矩形所以AD=BCAD平行BC因为M,N分别是AD,BC的中点所以AM=DM=1/2ADBN=CN=1/2BC所以DM=BN所以四边形BMDN是平
1、证明:根据正方体的一些性质可得: CD‖EF,AB‖EF,所以AB‖CD &nb
1、根据已知先证明四个小直角三角形是全等三角形;则四条斜边相等.2、直线为180度,三角形其他两个角相加为90度.则内四边形的角为90度.3、四条边相等,内角为90度的四边形为正方形.
BD=ABCD的面积/AC=(4√3)/(2√2)=√6连接EG得到△EGH的面积为平行四边形AEGD的1/2而△EGF的面积为平行四边形BEGC的1/2四边形EFGH的面积就为菱形ABCD面积的1/
结论:EFMN是正方形证明:∵ABCD是正方形,AE=BF=CM=DN∴AN=BE=CF=DM在△AEN、△BFE、△CMF、△DNM中,AE=BF=CM=DN∠A=∠B=∠C=∠DAN=BE=CF=
/>∵四边AEFD和四边形EBCF都是平行四边形∴AD∥EF,DF∥BCAD=EF,EF=CB∴AD∥BC,AD=BC∴四边形ABCD是平行四边形(一组对边相等互相平行的四边形是平行四边形)【数学辅导
因为AE=C1F且AB=D1C1所以根据勾股定理D1F=EB同理可证D1E=FB因为两组对边相等所以ebfd1为平行四边形应该就是这样
连接AC,在直角△ABC中,AB=3,BC=4,则AC=AB2+BC2=5,又∵AC2+CD2=AD2,∴△ACD为直角三角形,∴Rt△ABC的面积为12×3×4=6,Rt△ACD的面积为12×5×1
连接EG相交于O(这应该是不用证明的,直接解释两句),证明OE=OG又OF=OH,可证明其为平行四边形
(1)∵▱ABCD,∴AD=BC,AD∥BC.E、F分别是边AD、BC的中点,∴BF∥DE,BF=DE.∴BEDF为平行四边形,BE=DF.故正确;(2)根据平行线等分线段定理可得AG=G
∵AC∥平面EFGH,AC、EF在平面ABC内,∴AC∥EF,∴△BEF∽△BAC,∴BEBA=EFAC,同理,得DHDA=HGAC,又∵EF=HG,∴BEBA=DHDA,∴EH∥BD,∴△AEH∽△
首先无论如何EFGH是平行四边形.因为EH//FG且相等.所以下面只要找特殊条件.(1)一组邻边相等的平行四边形叫做菱形当AC=BD时EFGH是菱形AC=BD所以四边相等.(EF=1/2AC)所以是菱