如图bd和ce分别是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 17:03:20
如图bd和ce分别是
如图△ABC中BD、CE分别是边AC、AB上的中线,M、N分别是BD、CE的中点,求MN:BC的值

MN:BC=1:4证:连接DN,并延长DN交BC与F∵E是AB中点,D是AC中点∴ED‖BC(三角形中位线平行于第三边)∴ED=½BC(三角形中位线等于第三边一半)∴∠DEN=∠

如图,在三角形ABC中,分别延长中线BD、CE到点F、G,使DF=BD,EG=CE.是说明∠GAF是平角.

因为AD=DC,BD=DF,角ADF=角BDC,所以△ADF全等于△CDB,所以角BCD=角FAD,同理角EAG=角EBC,故角EAG+角BAC+角FAD=角EBC+角BCD+角BAC=180度

已知,如图BD,CE分别是△ABC的边AC和AB上的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB 求证

见下图:因为CE垂直BA,所以<QCA+<CAB=90’因为BD垂直CA,所以<ABP+<CAB=90’因此 <QCA=<ABP这两个相等角的两条边QC=AB,CA=BP根据相等三角形的定理

已知,如图BD,CE分别是△ABC的边AC和AB上的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB

1、证明:∵BD⊥AC,CE⊥AB∴∠ADB=∠AEC=90∴∠ABP+∠BAC=180-∠ADB=90,∠ACQ+∠BAC=180-∠AEC=90∴∠ABP+∠BAC=∠ACQ+∠BAC∴∠ABP=

务必在今天之类完成.1.如图,在△ABC中已知BD和CE分别是两边上的中线,并且BD⊥CE,BD=4,CE=6,求△AB

1.作DF平行EC,交BC延长线于F,连接ED,因:ED为三角形ABC的中线,所以:ED平行BC,ED=BC/2四边形EDFC为平行四边形,所以:CF=ED=BC/2,DF=EC=6三角形BDF为RT

如图,在△ABC中,已知BD和CE分别是两边上的中线,且BD⊥CE,BD=4,CE=6,那么△ABC的面积等于多少?

连接DE∵D、E分别为AC,AB的中点∴DE‖BC,DE=1/2BC∴S△ADE=1/4S△ABC=1/3S四边形BCDE∵BD⊥CE∴S四边形BCDE=1/2BD*CE=1/2*4*6=12∴S△A

如图,在三角形ABC中,已知BD和EC分别是两边上的中线,且BD垂直CE,BD=4,CE=6,那么三角形ABC的面积等于

正确答案是16哦四边形的面积为对角线乘积的一半,即1/2X4X6=12又DE为三角形的中位线,三角形ACD的面积:三角形ABC的面积=1:4,易得三角形ACD的面积=4,所以三角形ABC的面积=16

如图,在角ABC中,以知BD和CE分别是两边上的中线,且BD垂直CE,BD=4,CE=6,那么角ABC的等于多少

那是求△ABC的面积.连接DE∵D、E分别为AC,AB的中点∴DE‖BC,DE=1/2BC∴S△ADE=1/4S△ABC=1/3S四边形BCDE∵BD⊥CE∴S四边形BCDE=1/2BD*CE=1/2

(1)如图,在三角形ABC中,AB=AC,BD和CE分别是两腰上的高,试说明 BD=CE

三角形面积=底乘以高除以2,分别以AB,AC为底边计算面积即可再问:具体啊再答:面积=0.5*AC*BD=0.5*AB*CE又AB=AC所以BD=CE

如图,已知BD,CE是△ABC的高,P,Q分别在BD和CE的延长线上,且BP=AC,CQ=AB

设BD与CE的交点为O在三角形AOE和三角形COD中,因为BD是三角形ABC的高,所以角CDO=90度;因为CE是三角形ABC的高,所以角BEO=90度;且角BOE=角COD(对顶角)所以,角EBO=

如图,在三角形ABC中,BD,CE分别是角ABC.角ACB的平分线.

角B+角C=180-角A=180-xBDCE为角平分线角DBC+角ECB=1/2(角B+角C)=90-x/2角BPC=180-角DBC-角ECB=90+x/2望采纳

如图,已知:△ABC中,BD和CE分别是两边上的中线,并且BD⊥CE,BD=8,CE=12,求△ABC面积.

BD和CE分别是△ABC中两边上的中线,设它们相交于G点,则G是△ABC中的重心,∴CG=(2/3)CE=(2/3)×12=8,∵BD⊥CE,∴S△BCD=(1/2)×BD×CG=(1/2)×8×8=

如图,BD,CE分别是△ABC的边AC和AB边上的高,点P在BD的延伸线上,BP=AC,点Q在CE上,CQ=AB

因为角ABD+角BAD=角BAD+角ACE=90度.所以,角ABD=角ACE.因为BP=AC,CQ=AB.所以三角形ABP和ACQ全等.所以AP=AQ,角QAC=角APB.因为角QPB+角DAP=90

如图,BD,CE分别是三角形ABC的边AC和AB上的高,点P在BD的延长线上,BP=AC,点Q在CE上...

证明:因为BD,CE是高,所以角ADB=角AEC=90度,所以角ABD+角BAD=90度,角ACE+角CAE=90度,所以角ABD=角ACE,又因为BP=AC,CQ=AB,所以三角形ABP全等于三角形

如图,已知AB=AC,BD和CE是三角形ABC的中线,说明BD=CE

证明:AB=AC∠B=∠CBDCE是三角形中线BE=CDBC=BC(公共边)△BCD≌△BCEBD=CE加油!

如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别是∠ABC和∠ACB的平分线,BD,CE,分别交于点F.

∠A=36AB=ACBD,CE分别是∠ABC和∠ACB的平分线,所以∠EBD=36=∠ECD所以∠ABD∠AEC=108°所以∠BEC=∠BDC=72°所以∠BFE=∠CFD=72°所以△bef与△c

如图,bd,ce分别是三角形abc的边ac和边ab上的高,bd=ce,线段eb与线段cd相等吗?为什么?

eb与线段cd相等Rt△bdc和Rt△ceb中,ce=bd,bc=bc,则Rt△bdc≌Rt△ceb,cd=be.

如图,BD.CE分别是三角形ABC的边AC和边AB上的高,BD=CE,线段EB与线段CD相等吗

太简单了△ABD和△AEC中∠A公用∠AEC=90°=∠ADB且BD=CE所以△ABD和△AEC全等线段EB与线段CD相等

如图三角形abc中,bd,ce分别是边ac,ab上的高线(1)如果bd=ce,那么三角形abc是等腰

(1)在△BCE和△CBD中CE=BD,BC=CB,∠BEC=∠CDB=90°∴△BCE≌△CBD∴∠EBC=∠DCB∴AB=AC∴△ABC是等腰三角形(2)△DEF是等边三角形∵BF=CF,∠BED

如图,在△ABC中,BD 、CE分别是AC、 AB的高,H是BD、CE的交点.试猜想∠A和∠EHD之间的数量关系,并证明

∠A+∠EHD=180°∵BD、CE分别是AC、AB的高∴∠AEH=∠ADH=90°∵∠A+∠EHD+∠AEH+∠ADH=360°∴∠A+∠EHD=180°