如图efgh分别是正方形abcd各边的中点,af.bg.ch.de

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:46:17
如图efgh分别是正方形abcd各边的中点,af.bg.ch.de
如图,点E、F、G、H分别是正方形ABCD各边的中点,四边形EFGH是什么四边形

四边形EFGH是一个正方形因为点E、F、G、H分别是正方形ABCD各边的中点所以三角形AEF,BHE,HCG,FDG为全等的等腰直角三角形所以EF=EH=HG=FG,角BHE+角CHG=90度所以菱形

如图,EFGH分别为正方形ABCD的边AB,BC、cd、da上的点,

设边长=1,AE=BF=CG=DH=1/3ED=√10/3小正方形边长=√10/3-1/√10-1/3√10=√10/5小正方形面积=10/25=2/5阴影部分的面积与正方形ABCD的面积之比为=2/

如图,正方形纸片ABCD和正方形EFGH的边长都是1,点E是正方形ABCD的中心,在正方形EFGH绕着点E旋转的过程中,

(1)两个正方形重叠部分的面积保持不变;(2)重叠部分面积不变,总是等于正方形面积的14,即14×1×1=14,连接BE,CE,∵四边形ABCD和四边形EFGH都是正方形,∴EB=EC,∠EBM=∠E

如图,已知正方形ABCD的边长是15厘米,长方形EFGH的四个顶点三等分正方形的每条边,问长方形EFGH的面积是多少?

由题意可得:AE=AH=CG=CF=13AD=13×15=5(厘米),DH=DG=BF=BE=23AD=23×15=10(厘米),所以长方形EFGH的面积是:15×15-10×10-5×5,=225-

如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?

设AD与HG的交点为M,由题意知,∵四边形EFGH是△ABC内接正方形,∴HG∥BC,∴△AHG∽△ABC,∴HGBC = AMAD,HG21 = 15−HG1

如图,已知EFGH分别是正方形各自所在边的的三等分点,如果正方形的面积是1平方厘米,那么四边形EFGH的面积是

很高兴为您解答,答案是九分之五这题不用想的很麻烦,因为都是三等分点,所以ae=三分之一af=三分之二利用割补法,总面积剪空白,即可求出答案.1-4x九分之一=九分之五

已知:如图,矩形ABCD的外角平分线分别交于点EFGH.求证:四边形EFGH是正方形

证明:∵矩形的ABCD的外角都是直角,HE,EF都是外角平分线,∴∠BAE=∠ABE=45°.∴∠E=90°.同理,∠F=∠G=90°.∴四边形EFGH为矩形.∵AD=BC,∠HAD=∠HDA=∠FB

:如图,EFGH分别是正方形ABCD各边上的中点,已知三角形AEP的面积是12平方厘米.求阴影部分

S(平行四边形AFCH)+S(平行四边形BGDE)=S(正方形ABCD)其中上式等式左边阴影部分的面积重合了一次,则S(两个平行四边形和)-S(阴影部分)+4*S(三角形AEP)=S(正方形ABCD)

已知如图矩形ABCD的外角平分线分别交于点E、F、G、H.求证四边形EFGH是正方形

1、这个题目看起来是一个很简单的题目,其实要严格证明,却不简单.这里面有一个不太容易引起人们注意的陷阱,即多边形EFGH是四边形,也就是说要证明E、A、H在同一条直线上,H、D、G在同一条直线上,G、

如图正方形ABCD的面积与正方形EFGH的面积比是______:______.

如图:设大正方形边长为1,那么圆的直径也为1,则:(1×1):[1×(1÷2)÷2×2],=1:0.5,=2:1;故答案为:2:1.设大正方形边长为1,那么圆的直径也为1,根据“正方形的面积=边长×边

如图,正方形ABCD的边长为6m,点E是AB边上的动点四边形EFGH是正方形,则正方形EFGH面积最小值为

对照你的图形阅读下列内容:设AE=x,则BE=(6-X)BF=XS(EFGH)=EF²=X²+(6-X)²=2X²-12X+36这是一个开口向上的抛物线,当X=

如图,设PQRS分别是正方形ABCD各边BC,CD,DA,AB中点,AP,BQ,CR,DS围成一个四边形EFGH,试求四

设正方形边长为2根据相似AD^2=DH*DSDH=4/根号5GH=2/根号5所以面积比为5

如图,点E,F,G,H分别是正方形ABCD各边的中点,四边形EFGH是什么四边形?

答:四边形EFGH是一个正方形因为点E、F、G、H分别是正方形ABCD各边的中点所以三角形AEF,BHE,HCG,FDG为全等的等腰直角三角形所以EF=EH=HG=FG,角BHE+角CHG=90度所以

如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形边长EF=______.

先设正方形的边长等于x,∵四边形EFGH是正方形,∴GH∥BC,∴△AGH∽△ACB,△AGI∽△ACD,∴GHBC=AGAC,AGAC=AIAD,∴GHBC=AIAD,∴x21=15−x15,∴x=

如图,EFGH分别是正方形ABCD各边的中点,要使中间阴影部分的小正方形面积为1,则大正方形的边长应该是?

如图易知af平行于hc(bg上的两点分别设为m和n)又:f是bc中点由平行线分线段成比例定理得:bm=mn=1由于三角形abf相似于三角形bmf因此若设bf=x可得bm等于5分之2倍根号5所以5分之2

如图,平行四边形ABCD各内角的角平分线分别相交于EFGH,试说明四边形EFGH是矩形.

如图,角A,B,C,D,的角平分线交平行四边形各边为K,L,M,N.角KAD=角AKB=角BCM,所以,AK//CM,同理,BL//DN,所以四边形EFGH为平行四边形.又角ADC+角BCD=180度

已知:如图,矩形ABCD的外角平分线分别交与E、F、G、H.求证:四边形EFGH是正方形

其实不需要提问,网页上搜就有http://zhidao.baidu.com/question/96211040.html虽说不是自己做的,但还是望采纳啊.

如图,四边形EFGH是三角形ABC的内接正方形,BC=12cm,AD是三角形ABC的高且AD=15cm,求:内接正方形E

先设正方形的边长等于x ∵四边形EFGH是正方形 ∴GH∥BC,∴△AGH∽△ACB △AGI∽△ACD,∴GH/BC=AG/AC   ∴A

如图,四边形EFGH是△ABC内接正方形,BC=27cm,高AD=21cm,求内接正方形EFGH的面积.

设正方形EFGH的边长为x,设AD与GH的交点为I,∵HG∥BC,∴△AHG∽△ABC,∴AI:AD=GH:BC,正方形EFGH的边长为xcm.∵BC=27,AD=21,∴(21-x):21=x:27