如图O为三角形ABC的外接圆,AD是O的直径,且BD等于BC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 00:12:04
过圆心O作OG垂直BC交BC于G点可知G为BC的中点,因为EF垂直BC,AD垂直BC,所以EF‖OG‖AD,又因为O为AE的中点,得G为DF的中点,所以BF=BG+GF=CG+DG=CD,即BF=CD
(1)证明:根据切割线定理可知:FD•FA=FC•FB∵∠F=∠F,∴△FDC∽△FBA,∴∠CDF=∠ABC,∵AB=AC,∴∠ABC=∠ACB,∵∠ADB=∠ACB(所对的
题目没说是等边三角形,如果是的话,那么很好算.边长为6,则正三角形的高等于3根号3,三条中线的交点是外接圆的圆心,它到每个三角形的顶点距离等于中线长的三分之二.所以,用3根号3乘以三分之二,得2根号3
∵∠BDE+∠ADE=90°∠ADC+∠ADE=90°∴∠BDE=∠ADC∵∠DBE=∠CAD(同弧所对的圆周角相等)∴△ACD∽△BED∴AC∶BE=CD∶ED
三分之根号5再问:求过程再答:别忘了赞一个。因为弧ac,所以∠b等于∠d。因为ad是直径,所以∠dca是90度,由勾股得,dc为根号五,cos∠d等于ad分之dc等于三分之根号五。
连接dc因为ad为直径所以角acd为直角角abc等于角cad又因为角abc和角adc弧ac所对应的圆周角所以两角相等即三角形cad为等腰直角三角形因为oa为5所以ad为10所以ac等于cd等于五倍的根
证明:连接BD,∵AD是圆O的直径∴∠ABD=90°∴∠BAD+∠D=90°∵∠D、∠C所对应圆弧都为劣弧AB∴∠D=∠C∴∠BAD+∠C=90°∵AH⊥BC∴∠CAH+∠C=90°∴∠BAD=∠CA
证明:连接BE,因为CE为直径,所以∠EBC=90°,又因为CD⊥AB,所以∠ADC=90°,又因为∠CAD=EBC(都对应弧BC),所以∠ACD=∠BCE.
证明:连接BN∵B为圆上一点,CN为直径∴∠CBN=90∴∠NCB+∠BNC=90∵CM⊥AB∴∠ACM+∠BAC=90∵∠BAC、∠BNC所对应圆弧均为劣弧BC∴∠BAC=∠BNC∴∠NCB=∠AC
证明:连接BE,因为CE为直径,所以∠EBC=90°,又因为CD⊥AB,所以∠ADC=90°,又因为∠CAD=EBC(都对应弧BC),所以∠ACD=∠BCE.如果不理解可以继续追问,您也可以向我们的团
角ABC=60过O作OD⊥AC于D可得∠DOC=60∠AOC=120∠ABC=60(同一弧长所对的圆周角等于圆心角的一半)
角boc=55*2=110度.同弧所对圆心角是圆周角的二倍.再问:能详细点吗==表示生病了-没去学校再答:顶点在圆心的角,叫做圆心角。圆心角α的取值范围是0°
∵AB=AD+BD=11,∴本题中AB不是直径,如果是直径,直径可求.∴不是用射影定理,本题用相似三角形.根据勾股定理:AC=√(CD^2+AD^2)=3√5,BC=√(CD^2+BD^2)=10,过
过圆心O作OG垂直BC交BC于G点可知G为BC的中点,因为EF垂直BC,AD垂直BC,所以EF‖OG‖AD,又因为O为AE的中点,得G为DF的中点,所以BF=BG+GF=CG+DG=CD,即BF=CD
连接BO,CO,角BOC是圆心角,和∠BAC是同弧,所以较BOC为60°,所以,半径为2cm,直径4cm
连接OD,因为EF是圆的切线,可知OD⊥EF△AOD为等腰三角形,∴∠2=∠3,AD平分∠CAO,可知∠1=∠2,得出∠1=∠3,内错角相等,可以得出AF∥OD,OD⊥EF,那么AF⊥EF.连接CB,
楼上的,∠CAD=∠DAB,就得出CD=BD?证据不足啊等角对等边是对于同一个三角形,或两个全等形而言的哦.
(1)证:连接DB.三角形AFD和三角形ADB中,因为,角ADF=角ABD(弦切角定理),角FAD=角DAB(角平分线性质),所以,角AFD=角ADB=90度(直径对应的圆周角为90度),因而AF垂直