如图P为圆o为一点,作PT与圆O切于T,作PB与圆o相交于A,B

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:52:53
如图P为圆o为一点,作PT与圆O切于T,作PB与圆o相交于A,B
如图,p为圆O外一点,直线op交圆o与点b,c.过点p作圆o的切线

PA比PB=3比2设比值是x,有PA=3x,PB=2x在RT三角形OPA中,OA=r,AP=3x,OP=r+2x所以有r²+(3x)²=(r+2x)²r²+9x

如图,P为圆O外一点,直线OP交圆O于点B,C,过点P作圆O的切线PA,A为切点,已知PA/PB=3/2,求tan角PA

辅助线已作如图先证三角形ABP相似于三角形CAP:公共角P角ABP=角CAB+角ACB角CAP=角OAP+角CAO且三角形OAC等腰,从而角ACB=角CAO因为角CAB=角OAP=90°所以三角形AB

从圆C外一点P(a,b)向圆作切线PT,PT=PO(O为原点),求PT的绝对值的最小值及P点坐标

连结PC设PT=PO=m圆的方程可化为(x-2)^2+(y-3)^2=1则PC=根号(m^2+1)由OP+PC=m+根号(m^2+1)>=OC=根号13故m>=6根号13/13此时P在OC上kOC=3

p是圆o外一点,过p做圆o的切线pt,t为切点,过p做圆o的割线pcd交圆o于c,d,过c作pt的平行线交圆o于b,pb

因为TP//BC所以∠TPA=ABC因为∠ABC=ADC(同弧)所以∠MPA=ADC又因为∠PMC=PMD所以三角形APM相似于三角形PDM所以PM/MA=MD/PM即:PM平方=MA*MD因为TP为

如图,ab为园o的直径,c是圆o上一点,p是圆o外一点,op//bc,角p=角bac

(1)证明:∵AB是⊙O的直径∴∠ACB=90°∵OP//BC∴∠POA=∠CBA∵∠P=∠BAC∴∠PAO=∠ACB=90°∴PA是⊙O的切线(2)∵∠P=∠BAC,∠PAB=∠ACB∴△PAO∽△

如图,⊙O的半径为5cm,P是⊙O外一点,OP=8cm,以P为圆心作一个圆与⊙O外切,这个圆的半径是

(1)外切圆半径3cm,内切圆半径13cm.(2)⊙B的半径的比较6cm或10cm.

如图,PT是圆O的切线,切点为T,直线PA与圆O交于A、B两点,角TPA的平分线分别交直线TA、TB于D、E两点,已知P

PT^2=PA*PB=>PA=4√3/3后面一问我怀疑是TE/ADA=PTEAPD=TPE所以△APD相似△TPETE/AD=PT/PA=√3/2

如图,从圆C:x²+y²-4x-6y+12=0外一点P(a,b)向圆引切线PT,T为切点,且PT=P

圆C:(x-2)^2+(y-3)^2=1,圆心C为(2,3)CPT构成直角三角形,因此PT^2=PC^2-CT^2=(a-2)^2+(b-3)^2-1=a^2-4a+b^2-6b+12因为PT=PO,

从圆C:X2+Y2-4X-6Y+12=0外一点P向圆做切线PT,T为切点,且绝对值PT=绝对值PO(O为原点)求/PT的

x^2+y^2-4x-6y+12=0,(x-2)^2+(y-3)^2=1圆心Q(2,3),半径1P(x,y),切线|PM|^2=(x-2)^2+(y-3)^2-1^2=x^2+y^2-4x-6y+12

如图,P是圆O外一点,求作:过点P作圆O的切线

连接圆心和P点,用尺规画出这一线段的中点,以这条线段的中点为圆心,这条线段的一半长为半径作圆,辅助圆与已知圆的交点就是切点,然后连接就可以了

圆与方程.从圆C:x^2+y^2-4x-6y+12=0外一点P(a,b)向圆作切线PT,T为切点,且|PT|=|PO|(

圆心坐标为(2,3)a^2+b^2=(a-2)^2+(b-3)^2-14a+6b=12PO=a^2+b^2=a^2+(6-2a)^2/9=13/9a^2-8/3a+4当a=12/13时有最大值

如图,在圆o的直径上取一点p,以p为圆心,以ap为半径作圆p,过a点的两直线分别与圆o,圆p交于c

我正在解答您的问题,请稍候.再问:再答:如图,过点A作圆O的切线AM,则OA⊥AM,即PA⊥AM,∴AM是圆P的切线∴∠1=∠D(弦切角定理)同理∠1=∠EFA,∴∠D=∠EFA,∴EF∥CD&nbs

如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,10为半径作圆O,分别与∠EPF两边相交于A、B和C、D.求

俊狼猎英团队为您解答 ⑴∵OA∥PE,∴∠POA=∠EPO,∵∠EPO=∠APO,∴∠POA=∠APO,∴AP=AO;⑵∵PB=22,PA=OA=10,∴AB=12,过O作OH⊥AB于H,则AH=BH

如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,10为半径作圆O,分别与∠EPF两边相交于A、B和C、D

⑴过O作OP⊥AB于P,OQ⊥CD于Q,∵O在∠EPF的平分线是,∴OP=OQ,∴AB=CD(相等的弦心轤所对的纺相等).⑵∵OA∥PE,∴∠AOP=∠EPO,∵∠EPO=∠APO,∴∠APO=∠AO

如图 射线PG平分∠EPF,O为射线PG上一点,以O为圆心,10为半径作圆O,分别与∠EPC两边相交与A,B和C,D,连

①因为O//PE,所以,∠EPG=∠POA(内错角),又因为PG是∠EPF的角平分线,所以∠EPG=∠FPG,所以,∠POA=∠FPG,所以AP=AO(等角三角形)②从O点作PF的垂线,设与PF的交点

如图,点p是圆o外一点,过点p作圆o的切线,切点为4,连接po并延长,交圆o 于B,C两点.

证明:∵PA作⊙O的切线,切点为A,∴∠PAB=∠C,又∵∠P=∠P,∴△PBA∽△PAC请点击下面的【选为满意回答】按钮.

如图 p是线段ab上一点分别以AP,BP为直径作圆

(1)S=π*(x/2)²+π*(a/2-x/2)²=π(a²/4-ax/2+x²/2)(2)x=a/3,S1=5πa²/36x=a/2,S2=πa&

如图,圆o的直径AB等于6厘米,P是AB延长线上的一点,过P作圆o的切线,切点为c,连接AC,若点P在AB的延长线上运动

∠CMP的大小不变,∠CMP=45°连接OC,交PM于D∵PC是⊙O的切线∴∠OCP=90°∵PM平分∠APC∴∠MPC=1/2∠APC∴∠CDP=90°-1/2∠APC∵∠CMP=∠CDP-∠ACO