1 (根号1 lnx)x的积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:06:13
用换元法:令u=lnx,x=e^u==>dx=e^udu当x=1,u=0:当x=e,u=1==>∫(0~1)e^u/[e^u*√(1-u²)]du=∫(0~1)du/√(1-u²)
答案是2√3-2.详解如图:
先求不定积分∫lnx/√xdx=2∫lnxd(√x)(分部积分法)=2√xlnx-2∫√x/xdx=2√xlnx-2∫1/√xdx=2√xlnx-4√x+C再把上下限代入相减即可,这个很简单,因为不好
∫lnx/(x*根号下1+lnx)dx=∫lnx/√(1+lnx)dlnx=∫√(1+lnx)dlnx-∫1/√(1+lnx)dlnx=2/3*(1+lnx)^1.5-2√(1+lnx)+C
∫(e→+∞)1/(x√((lnx)³))dx=∫(e→+∞)(lnx)^(-3/2)d(lnx)=(lnx)^(1-3/2)/(1-3/2)|(e→+∞)=-2/√(lnx)|(e→+∞)
再问:非常感谢您的指点。
楼上第二题做得太麻烦了,第三题不对.1、∫x²/√(4-x²)dx令x=2sinu,则√(4-x²)=2cosu,dx=2cosudu=∫(4sin²u/2co
令x=t^2=>可以化成4lnt(上限为2,下限为1)的定积分,lnt的常数为0不定积分为tlnt-t=>4lnt(上限为2,下限为1)的定积分=4(2ln2-2)-4(1ln1-1)=8ln2-4
既要换元,又要分部,还涉循环积分.初学者有难度.
令根号x=t,当x∈[1,4]时,tx∈[1,2].∫(1→4)lnx/根号xdx=∫(1→2)2lnt/t*2tdt=4∫(1→2)lntdt=4t*lnt|(1→2)-4∫(1→2)tdlnt=4
∫1/(x*lnx)dx=∫lnxdlnx=1/2*(lnx)^2
原式=∫dx/lnx-∫dx/ln²x=∫dx/lnx-∫xd(lnx)/ln²x(∵dx=xlnx)=∫dx/lnx-(-x/lnx+∫dx/lnx)+C(第二个积分应用分部积分
若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
I=∫(1,e²)dx/(x√(1+lnx))设t=√(1+lnx),t²=1+lnx,x=e^(t²-1),dx=e^(t²-1)*2tdtI=∫(1,e
原式=∫d(lnx)/(lnx)^2=-1/lnx+C再问:∫上面是正无穷,下面是e的反常积分是多少。。。再答:原式=-1/lnx|(e→+∞)=0+1=1(因为lim(t→+∞)-1/lnt=0)
有用请及时采纳,谢谢!~
解;∫(√1+lnx)/xdx=∫√1+lnxd(1+lnx)=∫√udu=2/3(1+lnx)^(3/2)+C
1、令t=lnx则原式=∫lntdt.用分部积分法,取,u=lnt,dv=dt,v=t即可2、取u=e^(2x),dv=sinxdx,v=-cosx.用两次分部积分,然后移项整理即可3、令t=√(x+
(lnx))/(x+lnx)开始我试着用凑微分的方式做,无果.然后我观察了下,由于是(x+lnx)^2做分母,所以认为是一个以(x+lnx)为分母的分式,设分子为(Ax+Blnx).求导,待定系数求出