如图△def是三角形abc沿着射线bc

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:21:21
如图△def是三角形abc沿着射线bc
如图,三角形ABC~三角形DEF,AB:DE=k,AM,DN分别是三角形ABC和三角形DEF的高

(1)三角形ABM是相似于三角形DEN的,证明如下由三角形ABC~三角形DEF,故角ABC=角DEF又AM,DN分别是三角形ABC和三角形DEF的高,故角AMB=角DNE=90度三角形ABM与三角形D

如图,两个直角三角形重叠在一起,将其中一个三角形ABC沿着点B到点C的方向平移到△DEF的位置,AB=10,DH=4

△ADH∽△CEH所以AD:CE=DH:EH=2:3所以CE=9所以BC=15所以阴影面积为75-27=48

如图 三角形ABC是等边三角形,过它的三个顶点分别作对边的平行线,得到一个新的三角形DEF三角形DEF是等边三角形吗?点

证明:因为三角形ABC是等边三角形所以AB=AC=BC因为DE平行BCAB平行EF所以四边形ABCE是平行四边形所以AB=CEAE=BC因为AC平行DF所以四边形ADBC和四边形ABFC是平行四边形所

如图,三角形ABC中,AB=AC,BD=CE,角1=角B.求证:三角形DEF是等腰三角形(图有点畸形,在三角形ABC中,

AB=AC告诉我们∠B=∠C证明:∵AB=AC∴∠B=∠C∵∠B=∠1且∠B+∠BDE+∠DEB=180°∠DEB+∠1+∠FEC=180°∴∠BDE=∠FEC在△BDE和△CEF中:∠BDE=∠FE

三角形ABC,如图,已经三角形DEF的面积是25平方厘米,求三角形ABC的面积

连接DCS(BED)=S(BCD)/4S(BCD)=2S(ABC)/3S(BED)=S(ABD)/6连接BFS(ADF)=S(ABF)/3S(ABF)=4S(ABC)/5S(ADF)=4S(ABF)/

如图,△ABC和△DEF是两个格点三角形

AB//EDAB=EDBC//DFBC=DF过B作EF的平行线交AC于G,过D作AC的平行线交EF于H对应三角形对应边相互平行,所以相似因为有一个边长度相等,所以全等

如图 ,三角形ABC和三角形DEF是两个格点三角形

如图.△ABM≌△DEN△CBM≌△DFN∵AB=√(4^2+4^2)=4√2DE=√(4^2+4^2)=4√2AM=√(4^2+1^2)=√19DN=√(4^2+1^2)=√19BM=3,EN=3∴

如图,两个全等的三角形ABC和DEF重叠在一起,固定三角形ABC不动,将三角形DEF进行如下操作,三角形DEF沿线段AB

如图,过C、F点分别做△ABC、△DEF的高h1和h2∵△DEF沿线段AB向右平移∴CF=AD∵D为AB的中点∴AD=DB → CF=DB …… ①∵△ABC≌

如图,已知在三角形ABC中AD=BE=CF,且△DEF是等边三角形,求证:△ABC是等边三角形

证法一:这里用了两个明显的结论①当三角形两边不变时,第三边增大时,第三边对的角也增大.②当三角形两边不变时,第三边对的角增大时,其余两角都变小证明:由对称轮换性不妨设A》B》C那么BC》AC》AB∵A

如图,△ABC中,点D、E、F分别是AB、BC、CA的中点,求证:三角形ABC∽△DEF

【⊿ABC∽⊿EFD】证法1:∵点D、E、F分别是AB、BC、CA的中点∴DE,DF,EF均是⊿ABC的中位线∴DE=½AC,DF=½BC,EF=½AB即DE/DF/EF

如图,点DEF分别是三角形ABC的三条边中点,若三角形ABC的面积为S,求三角形DEF的面积

解过A点做BC的垂线交DF于点O交BC与点P.所以三角形ABC的面积为1/2AP×BC=S由于D,E,F是三遍的中点所以DE=1/2AC,DF=1/2BC,EF=1/2AB,AO=1/2AP所以三角形

如图,点d,e,f分别是三角形abc各边中点,证明三角形ade,三角形bdf,三角形cef,三角形def全等

如图∵d,e,f分别是三角形abc各边的中点∴de,ef,df分别为三角形的三条中位线∴df‖bc,de‖ac,ef‖ab∴df=be=ce,de=af=cf,ef=ad=bd∴△ade≌△bdf≌△

如图,三角形ABC和三角形ADC是三角形ABC分别沿着AB,AC边翻折180度形成的,

解:设AE与CD交于M.∠1:∠2:∠3=28:5:3;则∠BAE=∠1=[28/(28+5+3)]*180度=140度.∴∠CAM=360°-∠1-∠BAE=80°.∵∠E=∠3=∠ACM;∠EMD

如图,把三角形ABC三边分别三、四、五等分,△DEF面积是△ABC面积的______.

连接CD,做AG垂直BC,FH垂直BC,把三角形ABC的面积看作1,在三角形ABC与三角形BCD中,底相等,三角形BCD的高与三角形ABC的高的比是2:3,所以三角形BCD的面积:23,在三角形CDE