如图△def是三角形abc沿着射线bc
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:21:21
(1)三角形ABM是相似于三角形DEN的,证明如下由三角形ABC~三角形DEF,故角ABC=角DEF又AM,DN分别是三角形ABC和三角形DEF的高,故角AMB=角DNE=90度三角形ABM与三角形D
△ADH∽△CEH所以AD:CE=DH:EH=2:3所以CE=9所以BC=15所以阴影面积为75-27=48
证明:因为三角形ABC是等边三角形所以AB=AC=BC因为DE平行BCAB平行EF所以四边形ABCE是平行四边形所以AB=CEAE=BC因为AC平行DF所以四边形ADBC和四边形ABFC是平行四边形所
AB=AC告诉我们∠B=∠C证明:∵AB=AC∴∠B=∠C∵∠B=∠1且∠B+∠BDE+∠DEB=180°∠DEB+∠1+∠FEC=180°∴∠BDE=∠FEC在△BDE和△CEF中:∠BDE=∠FE
再问:怎么求出它们全等再答:
连接DCS(BED)=S(BCD)/4S(BCD)=2S(ABC)/3S(BED)=S(ABD)/6连接BFS(ADF)=S(ABF)/3S(ABF)=4S(ABC)/5S(ADF)=4S(ABF)/
AB//EDAB=EDBC//DFBC=DF过B作EF的平行线交AC于G,过D作AC的平行线交EF于H对应三角形对应边相互平行,所以相似因为有一个边长度相等,所以全等
如图.△ABM≌△DEN△CBM≌△DFN∵AB=√(4^2+4^2)=4√2DE=√(4^2+4^2)=4√2AM=√(4^2+1^2)=√19DN=√(4^2+1^2)=√19BM=3,EN=3∴
如图,过C、F点分别做△ABC、△DEF的高h1和h2∵△DEF沿线段AB向右平移∴CF=AD∵D为AB的中点∴AD=DB → CF=DB …… ①∵△ABC≌
http://zhidao.baidu.com/question/466261225.html
证法一:这里用了两个明显的结论①当三角形两边不变时,第三边增大时,第三边对的角也增大.②当三角形两边不变时,第三边对的角增大时,其余两角都变小证明:由对称轮换性不妨设A》B》C那么BC》AC》AB∵A
【⊿ABC∽⊿EFD】证法1:∵点D、E、F分别是AB、BC、CA的中点∴DE,DF,EF均是⊿ABC的中位线∴DE=½AC,DF=½BC,EF=½AB即DE/DF/EF
解过A点做BC的垂线交DF于点O交BC与点P.所以三角形ABC的面积为1/2AP×BC=S由于D,E,F是三遍的中点所以DE=1/2AC,DF=1/2BC,EF=1/2AB,AO=1/2AP所以三角形
AB和DEBE和CFBC和EFAC和DF再答:望采纳
如图∵d,e,f分别是三角形abc各边的中点∴de,ef,df分别为三角形的三条中位线∴df‖bc,de‖ac,ef‖ab∴df=be=ce,de=af=cf,ef=ad=bd∴△ade≌△bdf≌△
解:设AE与CD交于M.∠1:∠2:∠3=28:5:3;则∠BAE=∠1=[28/(28+5+3)]*180度=140度.∴∠CAM=360°-∠1-∠BAE=80°.∵∠E=∠3=∠ACM;∠EMD
连接CD,做AG垂直BC,FH垂直BC,把三角形ABC的面积看作1,在三角形ABC与三角形BCD中,底相等,三角形BCD的高与三角形ABC的高的比是2:3,所以三角形BCD的面积:23,在三角形CDE