如图一,三角形ABC与三角形DEF都是等腰直角三角形,角ACB=角EDF=90度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:15:48
如图一,三角形ABC与三角形DEF都是等腰直角三角形,角ACB=角EDF=90度
三角形ABC与三角形AED相似,证明:三角形ADC与三角形AEB相似

1、∵△ABC∽△AED∴∠BAC=∠EAD∵∠BAC=∠BAE∠EAD=∠CAD∴∠BAE=∠CAD2、∵△ABC∽△AED∴AB:AE=AC:AD∴AD:AE=AC:AB3、∵∠BAE=∠CADA

三角形ABC中,点D,E,F分别边长AB,BC,AC的中点,求三角形DEF与三角形ABC的面积之比

由于D,E,F是三条边上的中点那么,DF平行BC,DE平行AC,EF平行BA做三角形BC边上的高AM,DF将这个AM分成两段,由于D,F都是中点,所以高AM非分得的两段相等,所以DF与BC平行线间的距

如图,三角形ABC,三角形DEF均为正三角形,D,E分别在AB,BC上,请找出一个与三角形DBE相似的三角形并证明.

角AGD=角FGH,角GFH=角DAG=60度,所以角GHF=角ADG即ADG与GFH相似又角ADG+角BDE=120度,角FGH+角GHF=120,所以角BDE=FGH即证明了BDE与AGD,GFH

三角形ABC,点D、E、F分别为三角形ABC的中点,求与三角形DEF全等的三角形有哪些?

按照题意在草稿纸上作图.连接DE、DF和EF,故,DE//AC且DE=(1/2)AC;DF//BC,且DF=(1/2)BC;EF//AB,且EF=(1/2)AB在△ADE和△DBE中,角A=角BDE,

在rt三角形abc中,d是ab上的一点,过点d作一直线截原三角形形成与原三角形相似.点e是过点d的直线与三角形abc里一

在rt三角形abc中,∠c=90°d是ab上的一点,过点d作一直线截原三角形形成与原三角形相似.ac:bc=3:4,ad=6,求de的长(重点来了,点e是过点d的直线与三角形abc里一边的交点.原题d

如图一三角形abc是等边三角形,d是三角形abc内一点,将三角形abd绕点a旋转60度得三角形ace连接de,dc可以

将三角形BCP以B为中心旋转,使BC,AB重合得到三角形ABP’全等于三角形BCP则因为∠P’BP=90所以PP’=2根号2A在三角形APP’中A,2根号2A,3A符合勾股定理所以∠APP’=90因为

BE,CF分别是三角形ABC的边AC、AB上的高,BE与CF相交于点D.求证:1.三角形ABC相似三角形AEF

1、先由三角形AEB相似三角形AFC(两角相等)得到:AE:AF=AB:AC,再根据两边对应成比例,夹角(角A)相等,判定相似.2、根据相似比=AE:AB=1:2(因为角A=60度,直角三角形嘛),所

如图,在三角形ABC与三角形DEF中,∠A=∠D,AB/DE=AC/DF,求证:三角形ABC相似于三角形DEF

两边对应成比例,夹角相等,已经相似了.再问:按其他证明方法证明再答:还有一种方法就是把△DEF搬到△ABC上进行证明了,∵∠A=∠D,把△DEF搬到△ABC上,使A与∠D重合,且DE放在AB上,自然D

三角形ABC是不等边三角形,DE等于BC,以D,E为两个顶点做位置不同的三角形,使所做的三角形与三角形ABC全

如果是等腰,且BC为底的话,能做两个如果是等腰,且BC为腰的话,能做四个如果不是等腰三角形,能做四个

如图三角形ABC和点D,在图中画出三角形A'B'C',使三角形A'B'C'与三角形ABC关于D点中

回答有采纳不?再问:要采纳,必须画图再答:再答:连接起来,取相等线段再答:采纳,采纳!!再答:说好的采纳呢?别顽皮了,,,,

在三角形abc与三角形def中,ab=de,角a=角d,还要补充条件是( ),就可证三角形abc全等于三角形def(aa

在三角形abc与三角形def中,ab=de,角a=角d,还要补充条件是(∠C=∠F),就可证三角形abc全等于三角形def(aas)

再线等!三角形ABC全等于三角形A'B'C',AD与A'D'分别是两个三角形的角平分线,求证:AD=A'D'

因:三角形ABC全等于三角形A'B'C'所以:角BAC=角B'A'C'角ABD=角A'B'D'AB=A'B'又:AD与A'D'分别是角BAC和角B'A'C'平分线所以:角BAD=角B'A'D'所以:三

如图,连接三角形ABC各边中点D,E,F,试证明三角形DEF与三角形ABC相似

证明:因为D、E、F分别是AB、BC、CA的中点∴DE,EF,DF都是△ABC的中位线∴DE/AC=EF/AB=DF/BC=1/2∴△DEF∽△ABC(三边对应成比例的两个三角形相似)再问:请详细些,

已知D.E分别是三角形ABC的AB与AC边的中点试说明三角形ADE的面积等于三角形ABC的面积的四分之一

∵DE是△ABC的中位线∴DE=BC/2并且DE‖BC做BC边的高AF交DE于G点∵DE‖BC∴AG⊥DE△AGE∽△AFC(三个角对应相等)∴AG:AF=AE:AC=1:2面积△ADE=DE*AG/