如图三角形abc是等边三角形点df在边BC上,oe平行ab

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 20:09:44
如图三角形abc是等边三角形点df在边BC上,oe平行ab
如图,三角形ABC是等边三角形,D,F分别是BC,AB上的点,且CD=BF,以AD为边作等边三角形ADE.

点D在BC中点时,四边形CDEF是平行四边形,且∠DEF=30°证明:∵设点D在BC中点∴AD是△ABC的中线∴AD平分∠BAC又∵△ABC是等边三角形∴∠BAD=∠CAD=1/2∠BAC=30°∵C

如图,已知三角形ABC是等边三角形,点P是三角形ABC中的任意一点,分别连接AP,BP,CP,且AP=3,BP=4,CP

以PA为边长作等边△PAD,连结BD∵∠PAD=60°=∠BAC∴∠BAD=∠PAC∵AD=AP,AB=AC∴△ABD≌△APC∴BD=PC=5∵PD=PA=3,PB=4∴∠BPD=90°∵∠APD=

如图 三角形ABC是等边三角形,过它的三个顶点分别作对边的平行线,得到一个新的三角形DEF三角形DEF是等边三角形吗?点

证明:因为三角形ABC是等边三角形所以AB=AC=BC因为DE平行BCAB平行EF所以四边形ABCE是平行四边形所以AB=CEAE=BC因为AC平行DF所以四边形ADBC和四边形ABFC是平行四边形所

如图,三角形abc是边长为3的等边三角形.

延长AB到点E,使BE=CN,连接DE∵∠DBE=∠DCN=90°DB=DC∴△DBE≌△DCN∴DE=DN∵易得:∠EDM=∠NDM=60°DM为公共边∴△DME≌△DMN∴MN=EM从而,有:MN

已知:如图,三角形ABC是等边三角形,点D,E,F分别是边AB,BC,CA的中点.:三角形DEF是等边三角形

∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF

如图,已知三角形ABC是等边三角形,点D在BC上,点E在边AB上,DE平行于AC,三角形BDE是等边三角形吗?试说明理由

证明:因为△ABC是等边三角形,所以∠BCA=∠BAC=60°.又因为DE平行于AC,所以∠BDE=∠BED=60°,所以∠DBE=60°.所以△BDE是等边三角形.

如图,已知三角形abc与三角形aed都是等边三角形,点f在线段ab上,ef等于dc求证,三角形bef是等边三角形

证明:因为三角形ABC和三角形ADE是等边三角形所以AB=AC角B=角BAC=角BAE+角CAE=60度AE=AD角DAE=角CAE+角DAC=60度所以角BAE=角CAD所以三角形BAE和三角形CA

等边三角形三角形ABC是等边三角形,P为三角形ABC内部一点,将三角形ABP绕点A逆时针旋转后,能与三角形ACQ重合,如

因为三角形ABP绕点A逆时针旋转后,能与三角形ACQ重合,所以三角形ABP与三角形ACQ全等所以AP=AQ=3因为三角形ABC是等边三角形所以∠BAC=∠ABC=60`又因为∠PAC+∠BAP=∠AB

如图,三角形ABC为等边三角形,点O是三角形ABC角平分线的交点.将三角形绕点O按逆时针方向旋转,分别画出旋转30

S△ABC=6×8×1/2=24因为O是三角形角平分线的交点所以OD=OE=OF(用角平分线上的点到交的两边距离相等得出,此结论无需写证明过程,可直接用)设OD为x则S△ABC=(AB×OF×1/2)

如图三角形ABC是等边三角形.D是三角形外一动点,满足角ADB等于60度当不在AC垂直平分线上DA+DC=DB吗?

证明:(1)点D只能在AC的下边,容易得到BD是AC的中垂线,因此AD=DC,∠ABD=30°,在三角形内由正弦定理可以得到=,可以很快得到BD=2AD=AD+AC;(2)延长DA到E,使得∠EBD=

如图,三角形ABC为等边三角形,D,F分别是BC,AB上的点,且CD=BF,以AD为边作等边三角形ADE

1,在△ACD,△CBF中CD=BF∠C=∠B=60°AC=BC∴△ACD≌△CBF(SAS)2,当D在线段BC上的中点时,四边形CDEF为平行四边形,且角DEF=30度按上述条件作图连结BE,EF在

如图,等边三角形ABC的边长为8,M是三角形ABC内一点,MD//AC,ME//AB,MF//BC,点D、E、F分别是A

延长EM交AC于G,过F作FK∥EM,交BC于K得平行四边形ADMG,所以DM=AG,得平行四边形EMFK,所以ME=FK,在等边三角形MFG中,MF=FG,在等边三角形CFK中FK=FC所以MD+M

如图三角形ADC是等边三角形,角ACB=90三角形ABC是等腰直角三角形

因为三角形ABC是等腰三角形,且角ACB为90度,所以边AC=BC,所以三角形ABC为等腰直角三角形没有看到图只能这样回答再问:嗯嗯

如图.三角形ABC是等边三角形,延长AC至点D,以BD为一边作等边三角形BDE,连结AE.求证﹕AD﹦AE﹢AB

∵∠ABE=∠ABC-∠EBC=60°-∠EBC∠DBC=∠DBE-∠EBC=60°-∠EBC∴∠ABE=∠DBC∵AB=AC,BE=BD∴⊿ABE≌⊿CBD∴AE=CD∵AD=AC+CD∵三角形AB

如图 点o是等边三角形ABC内一点,将三角形BOC绕点C按逆时针方向旋转60度得到三角形ADC,连接OD.

(1)将三角形BOC绕点C按顺时针方向旋转60度,可知:OC=OD,∠OCD=60°(从OC旋转到OD),所以三角形COD是等边三角形(2)三角形COD是等边三角形,所以∠ODC=60°,当∠ADC=

如图三角形ABC为等边三角形,D分别是BC上的点,以AD为边作等边三角形ADE求证:三角形ACD全等于三角形ABE.

角BAD+角CAD=BAD+角BAE=60度,角CAD=角BAE.AD=AE,角CAD=角BAE,AC=AB,三角形ACD全等于三角形ABE

如图,三角形ABC与三角形DEC是等边三角形,AE,BD交于点O

证明:∵等边△ABC,等边△DCE∴AC=BC,DC=EC,∠BAC=∠ABC=∠ACB=∠DCE=60∵∠ACE=∠DCE+∠ACD,∠BCD=∠ACB+∠ACD∴∠ACE=∠BCD∴△ACE≌△B