已知函数fx=ex-e-x-2x 讨论fx的单调性

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:49:51
已知函数fx=ex-e-x-2x 讨论fx的单调性
高中函数 已知函数f(x)=x平方/ex次方. (1)求函数fx的单调区间. (2)若方程fx=m

f'(x)=[2xe^x-x²e^x]/(e^x)²=(2x-x²)/(e^x)∴(-∞,0)单调递减,(0,2)单调递增;(2,+∞)单调递减∴极小值是f(0)=0极大

已知函数f(x)=ex-x(e为自然对数的底数)

(Ⅰ)f(x)的导数f′(x)=ex-1令f′(x)>0,解得x>0;令f′(x)<0,解得x<0.(2分)从而f(x)在(-∞,0)内单调递减,在(0,+∞)内单调递增.所以,当x=0时,f(x)取

已知函数fx=e^x-1/e^|x|,其中e是自然对数的底数

证明:当x=0时,f(x)=1-1=0,从而f(-x)*f(x)=0;  当x0时,f(-x)=e^(-x)-1/e^x=e^(-x)-e^(-x)=0,从而f(-x)*f(x)=0*f(x)=0; 

已知函数fx=ex(x2+ax+1)求函数fx的极值

fx'=ex(2x+a)+ex(x2+ax+1)=ex(x2+(2+a)x+a+1)=ex(x+a+1)(x+1)令fx'=0得x1=-a-1,x2=-1ex>01)a=0fx是增函数无极值2)a>o

已知函数fx=x^2/2+lnx 求fx在区间(1,e)上的最大值最小值

1先对f(x)求导,它在(1,e)上递增2构造一个函数F(x)=g(x)-f(x),再对F(x)求导,可得到F(x)在区间内递增,即只需证明F(1)>0即可

已知函数fx=ax²-e的x次方

因为f(x)=ax²-e^x所以f′(x)=2ax-e^x(1)当a=1时,f′(x)=2x-e^x所以f″(x)=2-e^x当x>ln2时,f″(x)0时令f′(x)=2ax-e^x=0得

已知函数fx=lnx+ax^2+x,gx=e^x-ax

再问:...好像不太对

已知(2x+1)^5=a+bx+cx^2+dx^3+ex^4+fx^5,求下列各式的值:(1)a+b+c+d+e+f;(

1令x=1得到a+b+c+d+e+f=3^5=243令x=-1a-b+c-d+e-f=-1^5=-1a+c+e=1/2[(a+b+c+d+e+f)+(a-b+c-d+e-f)]=1212假设存在.则x

已知函数fx=(x-k)e^x,求fx的单调区间?

f'(x)=1*e^x+(x-k)*e^x=(x-k+1)*e^x显然e^x>0所以看x-k+1的符号f'(x)>0递增,f'(x)

已知函数fx=(x-m)2ex/m(1)求fx的单调区间(2)若对于任意的x∈(0,∞)都有fx小于等于1/49e3求m

解题思路:先求出函数的导数,通过讨论m的范围从而得到函数的单调区间。解题过程:

已知函数fx=(ex+1)(lnx-1) 求曲线y=fx在x=1处的切线方程

f'(x)=e^x(lnx-1)+(e^x+1)*(1/x)f'(1)=e+1f(1)=0切线方程:y=(e+1)*x如果不是e的x次方,而是e乘x那么f'(x)=e(lnx-1)+(ex+1)*(1

已知函数fx=(x-k)^2e^x.若方程fx=4e恰有两个不同的解,求实数k的值

令F(x)=e^x(x-k)^2-4e;求导知F(x)从(-∞,k-2]单调增,[k-2,k单调减],[k,∞)单调增,且F(k)<0;当F(k-2)>0时则会出现三个根,当F(k-2)&

急 已知函数fx=-x的平方+2ex+t-1,gx=x+x分之e的平方

1、g(x)=x+e^2/x>=2e,在x=e时取等号.(x>0)故m>=2e时,函数有零点.2、直接画图,g(x)是对勾函数,在x=e时,有最小值,f(x)是以x=e为对称轴的,开口向下的抛物线,这

已知函数f(x)=(2x+1)ex(e为自然对数的底数)

(1)∵f(x)=(2x+1)ex,∴f′(x)=(2x+3)ex,令f′(x)=(2x+3)ex>0,解得,x>−32,令f′(x)=(2x+3)ex<0,解得,x<−32,∴f(x)的单调递增区间

已知函数fx=ax^2+bx+1,Fx={fx,x>0 -(fx),x

首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/

已知函数f(x)=-x²+2ex+m,g(x)=x+e²/x(x>0)

令T(x)=f(x)-g(x)=-x²+(2e-1)x+m-e²/x,令F(x)=-x²+(2e-1)x+mG(x)=e²/x转化为F(x)与G(x)的交点问题

已知函数f(x)=-x²+2ex+t-1 ,g(x)=x+e²/x (x>0,e表示自然对数的底数)

已知函数f(x)=-x²+2ex+t-1,g(x)=x+e²/x(x>0,e表示自然对数的底数)(1)若g(x)=m有零点,求M的取值范围(2)确定t的取值范围,使得g(x)-f(

已知a属于R,求函数fx=x^2e^ax的单调区间

F(x)=x^2e^(ax)求导得:f’(x)=e^(ax)+ax²e^(ax)=e^(ax)(ax²+2x)e^(ax)恒大于0①a>0时,ax²+2x>0,解得x>0

已知a属于R,求函数fx=x^2e^ax的单调递增区间

求导数e^ax(ax2+2x)e^ax恒大于0,所以只要讨论ax2+2x即可x(ax+2)当a大于0时,递增区间就是x小于-2/a或者x大于0当a等于0时,x大于0递增当a小于0时,递增区间是x大于0