如图以ac为直径作圆o交bc于点o 交ab于点g且d是bc中点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:12:28
如图以ac为直径作圆o交bc于点o 交ab于点g且d是bc中点
如图,在等腰△ABC中,AC=BC=10,以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC于F,交CB的延长线于

(1)证明:连接OD,∵AC=BC,∴∠ABC=∠BAC,∵OD=OB,∴∠ABC=∠ODB,∴∠BAC=∠BDO,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∵OD为半径,∴直线EF是⊙O的切线;(2

如图,以三角形ABC的边BC为直径作圆O分别交AB,AC于点F点E(急 急)!

连接BM,CM∵BC为直径,AD⊥BC∴∠HDB=∠HEA=RT∠∴∠HBD=∠CAD又∠HDB=∠ADC=RT∠∴△ADC∽△BDH∴DB/DH=DA/DC,即DB*DC=DH*DA又∵BC为直径,

如图,以圆o的直径BC为一边作等边三角形ABC,AB,AC交圆O于D,E两点,试证明BD,DE,

连接OD、OE∵∠B=∠C=60°OB=OD=OE=OC∴∠DOE=60°∴等边△BOD、△OEC、△ODE∴BO=DE=EC

如图,在Rt三角形abc中,角C=90度,以AC为直径作圆O,交AB于D,过点O作OE//AB,交BC于E(1)证:ED

(1)OA=OD,所以角A=角ADOAD//OE角ADO=角DOE,角COE=角A=角DOEOD=OC,OE=OE所以三角形DOE与COE全等所以角ODE=90度ED是圆O切线(2)没有给边的长度,求

如图,以△ABC的边AB为直径作⊙O,交BC于D点,交AC于E点,BD=DE

(1)证明:连接AD,∵AB是直径,∴AD⊥BC,又∵BD=DE,∴∠BAD=∠EAD,而AD=AD,∴△ABD≌△ACE,∴AB=AC,即△ABC是等腰三角形;(2)∵AD⊥BC,即△ADC为直角三

如图,在△ABC中,AB=AC,以AB为直径的圆O交BC于点D,交AC于点E,过点D作DF⊥AC,垂足为F.

1、连接AD,OD∵AB是直径,∴∠ADB=90°,即AD⊥BC∵AB=AC,那么根据等腰三角形底边中线,高、和顶角平分线三线合一:∠BAD=∠CAD∵OA=OD,∴∠BAD=∠ODA=∠CAD∵DF

如图,以△ABC的边BC为直径作圆O分别交AB、AC于点F点E,AD⊥BC于D,AD交于圆O于M,交BE于H,求证:DM

证明:因为:△BDH相似于△ADCDH/DC=BD/ADDH×DA=DCxBD再连接MB、MC,则角BMC=90°所以:△BDM相似于△MDCDM^2=DCxBD故DM^2=DH×DA

如图,在△ABC中,AB=AC,以AB为直径的圆O交BC于D,过点D作DE⊥AC,交AC于E.DE是圆O的切线么?为什么

连接AD,因AB是直径,所以:AD垂直BC而:DE垂直AC,所以:角DAC+角ADE=角DAC+角C=90度所以:角ADE=角C而:AB=AC,三角形ABC是等腰三角形,角B=角C所以:角ADE=角B

如图在三角形ABC中,AB=AC,以AB为直径作圆O交BC于点D ,交AC于点G,过D 作DF垂直于AC于F,延长FD交

1)直线EF与圆O相切.证明:连接OD∵AB=AC,OB=OD∴∠B=∠C=∠OBD∴OD//AC∵EF⊥AC∴EF⊥OD因此,EF与圆O相切连接ADBD=CD=5AD=√(AB²-BD&#

如图,等腰三角形ABC中,AC=BC=5,AB=6.以BC为直径作圆O交AB于点D,交AC于点G,DF垂直于AC ,垂直

提示;①由己知条件可DB=3,CD=4,②证⊿CDF∽⊿CBD,可得,CF=3·2·,DF=2·4③证EF是⊙O的切线,由切割线定理FD²=FG×FC,求出FG,CG=CF-FG,④BC是⊙

如图,已知Rt三角形ABC中,角ABC=90°,以AB为直径作圆O交AC于D,过D作圆O的切线DE,交BC于E.求证:B

取AB中点F,则FD=FB,FD垂直DE角FBD=角FDB,角A=角ADF角FBE=角FDE=90度1故角EBD=角EDB故BE=DE2故角ADF+角DEC=90度,又角A+角C=90度故角EDC=角

如图,以三角形ABC的边AB为直径作圆O,交BC于点D,交AC于点E,BD=DC

1.证明:连接AD,AB为直径,则∠ADB=90°.即AD垂直BC;又BD=DC.故AB=AC.(线段垂直平分线上的点到线段两个端点距离相等).即三角形ABC为等腰三角形.2.连接BE,同理可证:BE

如图,以三角形ABC的一边AB为直径作圆O,圆O与BC边的交点D恰好为BC的中点,过点D作圆O的切线交AC边于点E。 (

解题思路:切线的性质、相似三角形的判定与性质.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.解题过程:

如图,三角形ABC中,AB=AC,以AC为直径的圆O交BC于点D,交AB于点E,连接CE,过点D作圆O的切线交AB于点M

(1)连接AD,则角ADC=90度,因为AB=AC,所以D为BC中点,连接OD,因为O为AC中点,所以OD//AB,因为DM为切线,所以角ODM=角BMD=90度,又角AEC=90度,所以DM//CE

如图,在△ABC中,AB=AC,以AB为直径作圆O交BC于D,交AC于E,过D作DG垂直AC于G,交AB的延长线于点F.

解:连接BE,AD.AB为直径,则∠BEA=∠ADB=90°,BE垂直AC.又AB=AC,则BD=CD.∵DG垂直AC.∴DG∥BE,⊿CGD∽⊿CEB,CG/CE=CD/CB=1/2,则CG=(1/

如图,已知三角形ABC中,AB=AC,以AB为直径作圆O,交BC于D,交AC于F,过D作DE垂直AC于E ,已知DE与圆

AB为直径,∠ADB=90°,∠AFB=90°,又AB=AC所以,D为BC中点,又DE⊥AC,所以DE//BF,所以E为CF中点,所以DE是CF的垂直平分线再问:为什么E为CF中点再答:中位线定理DE

已知,如图,△ABC中,AB=AC以AB为直径作圆O交边BC于D.交边AC于E

连接OE,OD,AD, ∵AB为圆O的直径,∴∠ADB=90°,又AB=AC,∴AD为∠BAC的平分线,即∠BAD=∠CAD又圆心角∠BOD与圆周角∠BAD都对BD弧又圆心角∠EOD与圆周角

如图,已知:在△ABC中,AC=BC,以BC为直径的圆O交AB于点D,过点D作DE⊥AC,交AC于点E,交BC的延长线于

如图.①辅助线:连接CD.∵AC=直径BC.∴等腰△ACB.又∵BC是⊙O直径.∴CD⊥AB.∴CD是△ACB的中线(很据等腰三角形三线合一定理).∴BD=AD.②辅助线:连接OD.∵OD,OB是⊙O

如图,在△abc中,ab=ac,以ac为直径作圆o交bc于点e,过点d作fe⊥ab于点e,交ac的延长线于点f.

①∵OD∥AB{∠ODC=∠OCD=∠ABC,同位角相等},故OD⊥FE{已知AB⊥FE};∴FE是⊙O的切线.②∵OD/FO=AE/FA=sin∠CFD=3/5 {正弦函数定义},FA=AE·5/3