如图圆o是abc的外接圆,BC为圆O的直径,作角CAD=角B
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 00:07:01
1.最大边对应最大角,所以∠A最大利用余弦定理cosA=(AB^2+AC^2-BC^2)/2AB*AC=-1/2则∠A=120度2.因为OA为外接圆半径,AD为直径,AD=2AO=2r,由正弦定理BC
证明:连接BI,∵I是△ABC的内心,∴∠BAI=∠CAI,∠ABI=∠CBI,弧BE=弧CE∴∠BAE=∠EBC∵∠BIE=∠BAI+∠ABI(三角形的外角等于与它不相邻的两个内角和),∠IBE=∠
sinB=1.8/3sinB=2/2R正弦定理得R=5/3
做OD垂直BC于D,则OD=5,BD=24/2=12,由勾股定理可得半径OB=13.该三角形为锐角…要知道锐角三角形的外心在里面,直角的在斜边中点,顿角的在外面
连接BI∵I是△ABC的内心∴∠BAI=∠CAI,∠ABI=∠CBI.弧BE=弧CE∴∠BAE=∠EBC∵∠BIE=∠BAI+∠ABI∠IBE=∠IBC+∠EBC∴∠EBI=∠EIB∴EB=EI
∵AC=3,BC=4,AB=5,O是其外接圆的圆心,∴△ABC是直角三角形,且O是AB的中点∴cos∠OAC=35,OA=52∴OA•OC=OA•(OA+AC)=OA2+OA•AC=254+52×3×
(1)证明:过O作OM⊥BC于M,则CM=BM;∵AD⊥BC,EF⊥BC,OM⊥BC,∴AD∥OM∥EF,又∵OA=OE,∴DM=MF,故CM-DM=BM-MF,即BF=CD.(2)连接BE,则∠AB
题目不完整,题目是不是这样?圆O是三角形ABC的外接圆,AD是BC边上的高,已知BD=8,CD=3,AD=6,求圆O的面积为多少?记住定理:设外接圆半径为R,三边长为a,b,c,S为三角形面积则有关系
在三角形ABC形中,cosA=1/3.===>sinA=(2√2)/3.设外接圆半径为r,则由正弦定理知,2r=|BC|/sinA=2/[(2√2)/3]=3/√2.===>r=3/(2√2).===
以P为圆心,PB为半径画弧,交AP于E,连接BE,则△PBE为正三角形∵∠AEB=180-60=120º,∠CPB=60+60=120º,∠BAE=∠BCP,AB=CB∴△ABE≌
证明:以E为圆心,以BC长为半径画弧交元O于F点.连接EF,FA.则:EF=BC,∠FAE=90°所以:∠EAF=∠DAC (弦相等,弦所对的圆周角相等)所以:RT△ADC∽RT△EFA所以
过点P作PE垂直AB,垂足为E,因PA=PB,所以E是AB中点,所以PE过点圆心O,因PA是圆O的切线,所以角OAP=90度,所以角OAE=角APO,今角OAE=角APO=a,半径为R,因∠ABC=9
再答:再问:好人呐再答:客气客气
过A作AD⊥BC于D,△ABC中,AB=AC,AD⊥BC,则AD必过圆心O,Rt△ABD中,AB=5,BD=3∴AD=4设⊙O的半径为x,Rt△OBD中,OB=x,OD=4-x根据勾股定理,得:OB2
(1).连BE,角E=角ACB,角ABE是直角,所以ABE和ADC相似,AB/AE=AD/AC,又AB=BC,BC*AC=AD*AE(2).FAC和FCB相似(弦切角ACF=角B),FA/FC=FC/
过O作OH⊥BC于H,则BH=CH(垂径分弦),∵DF⊥BC,AE⊥BC,∴DF∥OH∥AE,∴EH/FH=AO/BO=1(平行线分线段成比例),∴EH=FH,∴BH-FH=CH-EH,即BF=EC.
∵O为外心,OD⊥BC,∴BD=12BC=12,又OD=5,∴由勾股定理,得OB=BD2+OD2=122+52=13,∴△ABC的外接圆的半径是13cm.故本题答案为:13.
(1)证明:连接CE因为CD=CE=CB所以角CDE=角CED角CEB=角CBE因为角ACB=90度角ACB+角CDE+角CED+角CEB+角CBE=360度所以角CDE+角CBE=135度角CED+