如图圆o是abc的外接圆,c是优弧

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 00:52:34
如图圆o是abc的外接圆,c是优弧
如图,⊙O是△ABC的外接圆,已知∠B=60,求∠ACO的度数.

连接co,同弧所对的圆周角是圆心角的一半,角aoc就等于120°半径oa=oc所以角aco=30°

圆o是三角形abc的外接圆,一直角b=60度,则角cao的度

解题思路:连接OC.根据圆周角定理求得∠AOC=2∠B,再根据等腰三角形的性质和三角形的内角和定理即可求解.解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.Open

直角三角形ABC的面积是S,三边长是abc,c为斜边,则三角形内切圆半近是?外接圆半径是?

S△ABC=ab/2=(a+b+c)r/2∴三角形内切圆r=ab/(a+b+c)∵△ABC为直角三角形,∴斜边c就是外接圆的直径∴R=c/2

如图所示,O是三角形ABC的外心,I是三角形ABC的内心,AI交ABC的外接圆于E,交BC于D.求证:BE等于IE.

证明:连接BI,∵I是△ABC的内心,∴∠BAI=∠CAI,∠ABI=∠CBI,弧BE=弧CE∴∠BAE=∠EBC∵∠BIE=∠BAI+∠ABI(三角形的外角等于与它不相邻的两个内角和),∠IBE=∠

如图,在Rt三角形ABC中,叫C=90度,AC=2,AB=6,圆O是三角形ABC的外接圆,D是弧BC的中点,则BD等于多

连接od交bc于点E,应为D是弧BC的中点所以od垂直bc,所以角deb等于90,应为ab是直径所以角acb为90,所以bc为4根号2,od垂直bc所以be等于2根号2,三角形obe相似三角形abco

如图,⊙O是△ABC的外接圆,C是优弧AB上一点,设∠OAB=α,∠C=β.

(1)连接OB,则OA=OB;∵∠OAB=35°,∴∠OBA=∠OAB=35°,∵∠AOB=180°-∠OAB-∠OBA,∴∠AOB=180°-35°-35°=110°,∴β=∠C=12∠AOB=55

如图,⊙O是△ABC的外接圆,AB是⊙O的直径,过点C的切线与AB的延长线相交于点D,AE⊥DC交DC于点E.

(1)证明:如图,连接OC,∵DE是⊙O的切线,∴OC⊥DE.又∵AE⊥DE,∴OC∥AE.∴∠EAC=∠OCA.又∵OC=OA,∴∠OAC=∠OCA.∴∠EAC=∠OAC.∴AC是∠EAB的平分线.

三角形ABC是锐角三角形,圆O是三角形ABC的外接圆,角A=角CBD,直线BD与圆O相切吗?为什么?

证明:连OB,并延长OB交圆O于M,连MC,因为∠A和∠BMC所对的弧为BC所以∠A=∠BMC,因为∠A=∠CBD所以∠BMC=∠CBD因为BM是直径所以∠BCM=90°所以∠BMC+∠MBC=90°

已知:如图,圆O是三角形ABC的外接圆,角ACO=30度.求角ABC的度数

角ABC=60过O作OD⊥AC于D可得∠DOC=60∠AOC=120∠ABC=60(同一弧长所对的圆周角等于圆心角的一半)

如图,⊙O是△ABC的外接圆,AD是△ABC的高,AE是⊙O的直径,求证:∠BAE=∠CAD.

证明:连接BE,∵AE是⊙O的直径,∴∠ABE=90°.∴∠BAE+∠E=90°.∵AD是△ABC边上的高,∴∠ADC=90°.∴∠CAD+∠ACB=90°.∵∠E=∠ACB,∴∠BAE=∠CAD.

已知圆O是边长为2的等边三角形ABC的外接圆,求圆O的半径

 再问:最后看不清再答: 再答:这样呢再问:看清了

已知圆O是边长为2的等边三角形ABC的外接圆.求圆O的半径!

由正弦定理:a/sinA=2r,得2/sin60°=2r,r=(2/3)√3

在平面直角坐标系中A(0,4)B(0,2)C(9,1),圆O'是三角形ABC的外接圆,求圆心O'的坐标

用两边中垂线的交点求AB的中垂线为y=3BC中点为(4.5,1.5),BC斜率-1/9,其中垂线斜率9,点斜式y-1.5=9(x-4.5)交点为(14/3,3),即为圆心坐标

如图,圆O是三角形ABC的外接圆,CD是三角形ABC的高,AD等于3,BD等于8,CD等于6,求圆O直径

∵AB=AD+BD=11,∴本题中AB不是直径,如果是直径,直径可求.∴不是用射影定理,本题用相似三角形.根据勾股定理:AC=√(CD^2+AD^2)=3√5,BC=√(CD^2+BD^2)=10,过

如图,AD是三角形ABC的角平分线,延长AD角三角形ABC的外接圆O与点E,过C/D/E三点的圆O1

1、证明∵AD平分∠BAC∴∠BAD=∠CAD∵∠BAE、∠BCE所对应圆O圆弧均为弧BE∴∠BCE=∠BAD∵∠BCE、∠DFE所对应圆O1圆弧均为弧DE∴∠DFE=∠BCE∴∠DFE=∠CAF∵∠

圆O是三角形ABC的外接圆,角C=30度,AB=2厘米,求圆O的半径

直接告诉你一个结论:正弦定理:在△ABC中,角A、B、C所对的边分别为a、b、c,则有  (a/sinA)=(b/sinB)=(c/sinC)=2R(R为三角形外接圆的半径)所以:2/sinC=2RR

在rt三角形abc中,角acb=90°,bc>ac,圆o是三角形abc的外接圆,以c为圆心,bc为半径作

(1)证明:连接CE因为CD=CE=CB所以角CDE=角CED角CEB=角CBE因为角ACB=90度角ACB+角CDE+角CED+角CEB+角CBE=360度所以角CDE+角CBE=135度角CED+

如图圆O是三角形ABC的外接圆AD是圆O的直径若圆O的半径为5/2AC=2求角B的正切值

连接DC,角D=角B,AC垂直CD,求得CD=根号21,则角C正切为2/根号21,即得答案再问:角C正切为2/根号21??应该是角D吧??