如图在△ABC △ADE中,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:18:07
1、AB=8,∵ΔABC∽ΔADE,∴AD/AB=AE/AC,4/8=3/AC,AC=6,∴CD=AC-AE=3,2、∵D、E分别为AC、BC中点,∴DE∥AB,∴ΔABC∽ΔDEC.3、∵∠A=∠B
(1)△ABC∽△ADE,△ABD∽△ACE(2分)(2)①证△ABC∽△ADE,∵∠BAD=∠CAE,∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE.(4分)又∵∠ABC=∠ADE,∴
△ABD∽△ACE你已经证明△ABC∽△ADE那么得AB/AC=AD/AE∠BAD=∠CAE△ABD∽△ACE(边角边)
条件好像不够?DC和三角形ADE的面积关系?
根据您的问题,我做出如下回答:因为:∠BAD=∠CAE所以:∠BAD+∠DAC=∠CAE+∠DAC即:∠ABC=∠DAE又因为:∠ABC=∠ADE所以相似.
BC中点O为圆心BO为半径作圆,ED在圆上∵BD⊥AC,CE⊥AB,∴∠EBD=∠DCE,∠DEC=∠DBC,∠ADE=∠DEC+∠DCE=∠DBC+∠EBD=∠ABC,又∠A为公共角,∴△ADE∽△
原题条件“S△ADE=3,S△ADE=2”显然有误,请审核原题(可能还有遗漏),谢谢!再问:S△ADE=3S△BDE=2再答:∵S△ADE/S△BDE=AD/BD=3/2(等底同高)∴AD/AB=3/
过c点做AB平行线,与ED延长线交于F点,连接EC.△ADE与△DCF全等ED=DFS△ADE=S△DCF=9,又EF=2DF,S△ECF=9*2=18AB//CFAE:BE=3:2CF:BE=3;2
证明:(1)∵△ABC、△ADE是等边三角形,∴AE=AD,BC=AC=AB,∠BAC=∠DAE=60°,∴∠BAC+∠CAD=∠DAE+∠CAD,即:∠BAD=∠CAE,∴△BAD≌△CAE,∴BD
相似因为∠BAD=∠CAE,所以∠BAC=∠DAE又因为∠ABC=∠ADE所以△ABC∽△ADE所以AD/AE=AB/AC在△ABD和△ACE中AD/AE=AB/AC,∠BAD=∠CAE所以△ABD∽
证明:∵DE∥BC,∴DE∥FC,∴∠AED=∠C.又∵EF∥AB,∴EF∥AD,∴∠A=∠FEC.∴△ADE∽△EFC.
证明:∵BD⊥AC,CE⊥AB,∴∠ADB=∠AEC=90°,∵∠A=∠A,∴△ABD∽△ACE,∴ADAE=ABAC,∴ADAB=AEAC,∴△ADE∽△ABC.
图呢啊啊话说平行了不就相似了么.因为平行所以角相等于是就相似了啊你确定是ADE和ABC么
因为∠BAD=∠CAE,所以∠BAD+∠CAD=∠CAE+∠CAD,即∠BAC=∠DAE.在△ABC和△ADE中,因为AC=AE,∠C=∠E,∠BAC=∠DAE,由角边角定理,△ABC≌△ADE.
∠EAD=∠1+∠EAB,∠BAC=∠2+∠EAB因为∠1=∠2,所以∠EAD=∠BAC又∠E=∠B,AC=AD角角边全等定理△ABC≌△ADE
(1)△ABE≌△ACB∵,△ADE、△ABC是等腰直角三角形,∴AB=ACAD=AE角BAC=∠EAD=45°∵AB=ACAD=AE角BAC=∠EAD=45°∴△ABE≌△ACB(SAS)(2)∵△
在这两个三角形中还有两个角相等,你没给图,就算他∠3=∠4好了,找两个相等的,与∠1和∠2不同的两个角就行,亲.
(1)∵∠BAD=∠CAE,∠DAC=∠DAC.∴∠BAC=∠DAE,又∵∠ABC=∠ADE.∴△ABC∽△ADE,(AA)∴AB:AC=AD:AE°∵∠BAD=∠CAE∴△ABD∽ACE(SAS)(