如图在○O中,弦AB=2,CD=1,CD垂之于BD,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:31:29
很简单呐解:因为AB为直径且垂直CD所以CP=PD因为角APD=角CPB角B=角D所以三角形APD相似于三角形CPB所以AP比CP=DP比BP所以CP·PD=AP·BP即PC^2=PA*PB
证明:连接AC、BC则∠ACB=90°∵CP⊥AB∴弧BC=弧BD∴∠A=∠BCP∵∠CPB=∠CPA=90°∴△ACP∽△CBP∴CP/AP=BP.CP∴CP²=AP*PB
∵弦AD=弦BC∴∠AOD=∠BOC∴∠AOD+∠AOC=∠BOC+∠AOC即∠COD=∠AOB∴弦AB=弦CD(定理:在同圆或等圆中,若两个圆心角、两条弧、两条弦中有一组量相等,则对应的其余各组量也
连接OC,∵直径AB=10,∴OC=12AB=5,∵CD⊥AB,OE=3,∴CD=2CE,在Rt△OCE中,CE2+OE2=OC2,即CE2+32=52,解得CE=4,∴CD=2CE=2×4=8.故答
因为弦AB=CD,所以弧AB=CD,所以弧AD=BC,所以弦AD=BC
(1)∠CPD=∠COB.…(1分)理由:如图所示,连接OD.…(2分)∵AB是直径,AB⊥CD,∴BC=BD,…(3分)∴∠COB=∠DOB=12∠COD.…(4分)又∵∠CPD=12∠COD,∴∠
连结BC∵AE//CD∴∠COA=∠BAE而∠COA=2∠CBA∴∠BAE=2∠CBA∴弧BE=2弧AC
做辅助线:连接OA\,OB,OC,OD,则有:OA=OB=OC=OD在三角形OAE和OCF中,OA=OC,OE=OF,角OEA=角OFC=90度,所以三角形OAE与OCF全等,所以AE=CF,同理可证
因为同弧对应的圆周角,等于圆心角的一半,而∠COD是劣弧CD所对的圆心角,∠CPD是同一劣弧CD所对的圆周角,因此∠CPD=1/2∠COD;又CD垂直于AB,故∠COB=1/2∠COD,因此∠CPD=
⑴过O作OM⊥AB于M,ON⊥CDD于N,∵OP平分∠APC,∴OM=ON,∴AB=CD(相等的弦心距所对的弦相等),⑵由垂径定理得BM=1/2AB,DN=1/2CD,∴BM=DN,易得ΔPOM≌ΔP
因AB//CD推出角AOC=角BOD推出弧AC=弧BD(相等的圆心角对应的弧长相等)连接ACBD则AC=BD在证明三角形ACD全等于三角形BDC就行了刚才的写错了
(1)证明:∵AB=CD,∴AB=CD.∴AB-AD=CD-AD.∴BD=CA.∴BD=CA.在△AEC与△DEB中,∠ACE=∠DBE,∠AEC=∠DEB,∴△AEC≌△DEB(AAS).(2)点B
连接BD,则角ADB=90度角ABD=角ADC=角D(同为BDC的余角)在Rt△ADB中,sinABD=AD/AB=2*5(1/2)/5cosABD=(1-cos^2ABD)^(1/2)cosABD=
过O作OE⊥AB于E,OF⊥CD于F,则E,F为AB,CD中点,连OP.AB=CD,所以OE=OF.再由勾股定理(OP=OP,OE=OF)得PE=PF.AP=AE+PE=DF+PF=PD.
证明:(1)∵在⊙O中,弦AB=CD,∴弧AB=弧CD,∵弧BC=弧CB,∴弧AC=弧BD;(2)∵弧AC=弧BD,∴∠AOC=∠BOD.
证明:1.过O作OE⊥AB于E点,过O作OF⊥CD于F点在直角三角形OPE与直角三角形OPF中∵AB,CD与OP成等角∴∠OPE=∠OPF又OP是公共边∴直角三角形OPE≌直角三角形OPF(角,角,边
证明:连接OM,ON,AO,OC,如图所示,∵M、N分别为AB、CD的中点,∴OM⊥AB,ON⊥CD,又AB=CD,∴AM=CN,在Rt△AOM和Rt△CON中,∵OA=OCAM=CN,∴Rt△AOM
OM平方+AM平方=OA平方AM平方=5*5-3*3=16AM=4AB=AM*2=4*2=8弦AB的长等于8.