如图在四边形ABCD中E是AB上一点△ADE和△BCE
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:33:56
做BD的辅助线连接,有题目可以得出,证明EFGH为平行四边形,只要证明四边形的两边是平行的就行了.\x0d在三角形ABD中,E,H分别为AB,AD,的中点,有三角形中点线证明可得,EH是平行于BD的,
我先写,等会照给你再问:快啊,我在考试再答:sorry,你问别人吧,乍一看会的,但是有想不起来了再答:暑假里考什么啊再问:我们还没放假啊再答:呃。。。。再答:快问别人再问:哎再答:把我这设为差评吧,我
证明:∵E是AB的中点,G是AC的中点∴EG是△ABC的中位线∴EG=½BC,EG//BC∵H是BD的中点,F是CD的中点∴HF是△BCD的中位线∴HF=½BC,HF//BC∴EG
证明:∵E是AB的中点,H是BD的中点∴EH是△ABD的中位线∴EH=1/2AD同理:FG是△ACD的中位线,EG是△ABC的中位线,FH是△BCD的中位线∴FG=1/2AD,EG=1/2BC,FH=
证明:∵E、H分别为AB、BD的中点∴EH为三角形ABD的中位线∴EH‖AD,且EH=AD/2同理GF‖AD,且GF=AD/2∴EH‖GF,且EH=GF∴四边形EGFH是平行四边形
证明:∵E是AB的中点,G是AC的中点∴EG是△ABC的中位线∴EG=½BC,EG//BC∵H是BD的中点,F是CD的中点∴HF是△BCD的中位线∴HF=½BC,HF//BC∴EG
取BC中点M,连接EM、FM在三角形ABC中,EM为中位线,所以EM=1/2*AC同理可得FM=1/2*BD所以EM+FM=1/2*(AC+BD)在三角形EFM中,根三角形三边关系定理可得EF
如图,连结AC,BDEFGH是平行四边形.由E,F,G,H分别是AB,BC,CD,DA的中点可知EF,FG,GH,EH分别是三角形ABC,BCD,CDA,ABD的中位线,由定理:三角形的中位线平行于三
证明:∵AB=CD,AB//CD∴四边形ABCD是平行四边形∵CB=CD∴四边形ABCD是菱形(邻边相等的平行四边形是菱形)
(1)三角形DAF内角和∠DAF+∠F+∠ADF=∠DAF+2∠F=〖180〗^0;即∠DAF+2∠F=〖180〗^0(2)三角形BCE外角∠CBF=∠E+∠BCE=2∠E;已知∠ADF=∠F;由平形
ABCD是平行四边形,所以AD=BC.E是AB的中点,所以AE=BE,ED=EC所以三角形ADE全等于三角形BCE,所以角EAD=角EBC.因为AD//BC,所以角DAE+角EBC=180所以角EAD
已知条件有错,应该是AD//BC的如下是证明:过E点做EF//AD,则EF//BC又AE平分
你说的是不是上面这道题?你没有图,所以.大概字母不太对...由于过程太长,我把我在求解答的网上找到的一样的题目发给你查看原题详解求解答是很专业的数学题库网站,以后有问题可以先去那里查一下非常方便快捷,
结论:AB=AF+CF.证明:分别延长AE、DF交于点G.∵E为BC的中点,∴BE=CE,∵AB‖CD,∴∠BAE=∠G,在△ABE与△GCE中,∴△ABE≌△GCE,∴AB=GC,又∵∠BAE=∠E
不对吧,连结AC,BD,应该填AC=BD,因为E、F、G、H分别是边AB、BC、CD、DA的中点,所以EF=1/2AC,FG=1/2BD,GH=1/2AC,EH=1/2BD(三角形中位线定理),又因为
条件是BC=AD因为HE‖=1/2BC‖=GF,同理GH‖=EF,故EFGH为平行四边形,要使四边形EFGH是菱形,则EF=GH,故BC=AD
证明:1)∵AB∥CE,BE∥CD∴∠ABE=∠BEC=∠ECD,∠AEB=∠EDC∴△ABE∽△ECD2)∵BE∥CD∴S△BCE:S△EDC=BE:CD=2:1(等高)而△ABE∽△ECD∴S△A
因为AB=CD,且E.F又是中点,所以CF=AE再答:因为四边形ABCD是平行四边形,所以AB平行CD,所以CF平行AE再答:因为CF与AE平行且相等,所以为平行四边形
因为ABCD是平行四边形,所以AB=CD又因为E,F分别是AB,CD的中点,所以AB〃CD所以AB平行且等于CD所以AECF是平行四边形再答:手机写很累滴