如图在四边形abcd中e是bd上一点,ae的延长线交de于点f
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:00:12
AECF是平行四边形AF=ECEO=FOE,F分别是BO,OD的中点BE=DF角OEC=角OFA180C-OEC=180-OFABEC=DFAAF=ECBE=DFBEC全等DFAL.EBC=L.ADF
连接EF和HG因为E,F分别是BD和BC的中点,所以EF是三角形BCD的中位线所以EF=1/2CD,且EF平行于CD因为H,G分别是AD和AC的中点,所以HG是三角形BCD的中位线所以HG=1/2CD
证明:∵E是AB的中点,G是AC的中点∴EG是△ABC的中位线∴EG=½BC,EG//BC∵H是BD的中点,F是CD的中点∴HF是△BCD的中位线∴HF=½BC,HF//BC∴EG
证明:∵E是AB的中点,H是BD的中点∴EH是△ABD的中位线∴EH=1/2AD同理:FG是△ACD的中位线,EG是△ABC的中位线,FH是△BCD的中位线∴FG=1/2AD,EG=1/2BC,FH=
证明:∵E、H分别为AB、BD的中点∴EH为三角形ABD的中位线∴EH‖AD,且EH=AD/2同理GF‖AD,且GF=AD/2∴EH‖GF,且EH=GF∴四边形EGFH是平行四边形
证明:∵E是AB的中点,G是AC的中点∴EG是△ABC的中位线∴EG=½BC,EG//BC∵H是BD的中点,F是CD的中点∴HF是△BCD的中位线∴HF=½BC,HF//BC∴EG
证明:如图∵AB=CD(已知) E.G为中点∴AE=BE=DG=CG(中点定义)又∵AD=CD(已知) &n
证明:因为G,E是BD,BC的中点所以GE是△BCD的中位线所以GE∥CD,GE=CD/2同理,FH∥CD,FH=CD/2所以GE∥FH,GE=FH所以四边形EGFH是平行四边形(一组对边平行且相等的
简单再问:好吧!再答:我做再答: 再答:早再答:对了再答:给好评再答:给嘛!再答:hi再问:谢谢。再问:很好!再问:很好!再问:错了我找你。再答:加入梦之都群368575682为你解答再问:
∵E,F,G,H分别是AB,CD,AC,BD的中点∴EH∥AD,且EH=1/2ADGF∥AD,且GF=1/2ADEG∥BC,且EG=1/2BCFH∥BC,且FH=1/2BC又∵AD=BC∴EH=GF=
作辅助线,连结AC,BD,和四边形EGFH的四边根据三角形中位线定理可证EG//FH,EH//FG所以EGFH是平行四边形
证明:∵F是CD的中点,G是AC的中点∴FG是△ACD的中位线∴FG//AD,FG=1/2AD∵E是AB的中点,H是BD的中点∴EH是△ABD的中位线∴EH//AD,EF=1/2AD∴FG//EH,F
已经可以证明EFGH是平行四边形GH=1/2ADEF=1/2ADGH=EFGF=1/2BCEH=1/2BCGF=EHEFGH是平行四边形只需要满足BC=AD就可以使得GH=EF=GF=EH
如图,在四边形ABCD中,对角线AC,BD相交于点O,E,F分别为OA,OC的中点,求证:四边形BFDE是平行四边形答案:【必须是平行四边形ABCD】证法1:∵四边形ABCD是平行四边形∴AO=CO,
∵E,F,G,H分别是AB,CD,AC,BD的重点∴GE∥BCFH∥BCFG∥ABEH∥AB∴GE∥FH、GF∥EH∴四边形EGFH是平行四边形
证明:∵E、H分别为BD,BC的中点∴EH‖CD,EH=1/2CD同理可得FG‖CD,FG=1/2CD∴EH‖FG,EH=FG∴四边形EHFG是平行四边形同理可得FH=1/2AB∵AB=CD∴EH=E
此题运用中位线求解在三角形ACD中,GH是中位线,∴GH平行且等于1/2AD,同理,在三角形ABD中,EF是中位线,∴EF平行且等于1/2AD.∴GH平行且等于EF,∴四边形EFGF是平行四边形.
条件是BC=AD因为HE‖=1/2BC‖=GF,同理GH‖=EF,故EFGH为平行四边形,要使四边形EFGH是菱形,则EF=GH,故BC=AD
在平行四边形ABCD中,AO=OC,BO=OF又因为BE=DF所以BO-BE=OF-DF即OE=OF在四边形AECF中,AO=OC,OE=OF所以四边形AECF是平行四边形