如图在平面直角坐标系中,△AOP为等边三角形,A﹙0,1﹚,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:08:25
如图在平面直角坐标系中,△AOP为等边三角形,A﹙0,1﹚,
如图,在平面直角坐标系xoy中

1.(-2,2)2.-1,0.53.1.5,-0.25

如图平面直角坐标系中

  发了图片,最快回答,

如图,在平面直角坐标系x0y中,

1)角GOA=角MON角AGO=角NMO所以相似(相似三角形的判定有点忘记了,但相信你能解决的)2)先求过点O、A、M的直线方程,即通过该方程解A的坐标,所以先得求M的坐标具体过程如下:过M作MC垂直

如图在平面直角坐标系中

从D作AB的垂线,交AB于M,∴DM=y-1,BC=4,MB=1-x,AM=-7-x∴37=(4+y-1)×(1-x)÷2-(-7-x)×(y-1)÷2化简得到:2x-4y+39=0又2x+5y=22

如图,在平面直角坐标系中,以点A(-1,0)为圆心,AO为半径的圆交x轴 负半轴于另一

(1)连接AF,圆心与切点所成半径垂直于切线,所以△AFC为直角三角形,角AFC为直角因为A点坐标为(-1,0)所以园A半径为1,所以AF的长度为1,根据勾股定理得AC为√5,C点坐标为(√5-1,0

30. 如图,在平面直角坐标系中,以点A(-1,0)为圆心,AO为半径的圆交x轴 负半轴于另一

(1)连接AF,因为FC为圆的切线,所以AF垂直FC,AF=OA=1,CF=2,所以根据勾股定理得AC=根号5,所以OC=根号5-1,C点坐标为(根号5-1,0)(2)因为EF和EO都为圆的切线,所以

如图,在平面直角坐标系中,三角形AOB为等腰直角三角形,AB=AO,若C为x轴负半轴上一动点,以AC为直角边作等腰直角三

分别过D、A作线段DM、AN垂直于x轴那么在等腰△ABC中,AN=ON因为△ACD为等腰直角三角形,所以AC=CD容易证明RT△DCM全等于RT△ACN所以DM=CNCM=ANMO=MC+CO=AN+

(2012 云南)如图,在平面直角坐标系中

百度文库中有免费下载.

如图7,在平面直角坐标系中,点A的坐标为(0,-2),以点A为圆心,AO为半径画圆,直线Y=-

1.CE与圆有三种位置关系,相交,相切和相离2.当直线CE与与圆相切时,∵C为直线BC与Y轴的交点∴C(0,4),设直线CE的斜率为k那么直线CE的方程为y-4=kx即y=kx+4圆A的方程为x

如图,在平面直角坐标系中,直线y=-x+b交x轴于A(8,0),交y轴于B,C为线段AO上一点,且S△AB

直线y=-x+b交x轴于A(8,0),交y轴于B,C为线段AO上一点,且S△ABC=16,P为线段AB上一点,OP交BC于D1.求直线BC的解析式2.若S△ODC=4,求点P的坐标,3.是否存在这样的

二次函数题,在平面直角坐标系中,△AOB的位置如图2-2-7所示.已知∠AOB=90°,AO=BO,点A的坐标(-3,1

(1)从A、B两点引垂线到X轴得到2个RT三角形因为等腰所以斜边相等再用几个余角相等的定理易证全等(角角边)所以B(1,3)(2)因为过原点,所以设y=ax2+bx(平方打不出来)把A、B两点坐标带入

如图,在平面直角坐标系xoy中..救急!

1:连接CM,A、M点坐标知道,AM=2,CM=AM=2,O(0,0)坐标原点,推出:OM=1,利用勾股定理:CO平方+OM平方=CM平方推出:OC=根号下3,则C(0,根号下3)我不能打符号,自己打

如图,在平面直角坐标系中,

(2).a你做错了当0≤x≤5时P(5-x,0)Q不变(0,10+x)5≤x≤10时P(x-5,0)Q(0,10+x)b.△APQ在运动过程中,其面积始终是AP×OQ/2∵△APQ的面积为32平方单位

如图在平面直角坐标系中Rt三角形OAB

oA:y=4/3x反比例函数表达式:y=12/xC:(4,3)M的坐标为(1.5,2)连接MC与AB的交点就是点P的坐标MC的表达式要求出来

如图1,在平面直角坐标系

根号a^2-4+根号4-a^2+16/a+2能不能写具体点根号里都包含哪些?

已知:如图,在平面直角坐标系xOy中,

没图,我来试试.(1)A为(0,0),△ABC边长为2*sqr(3),BC∥x轴,则C应为(sqr(3),-3)(也可是(-sqr(3),-3),因为你没给图,我不知道B和C谁在左边,谁在右边,我姑且

如图,在平面直角坐标系中,已知等腰三角形AOB的底边是OB,腰AO=AB,点A的坐标是(4,3)

因为A的坐标为(4,3),且△OAB为等腰三角形,腰AO=AB,所以B点坐标(8,0)所以有知道两点求直线,由求两点式的公式(y-y1)/(y2-y1)=(x-x1)/(x2-x1)可以求得AB解析式

如图,在平面直角坐标系中,

解题思路:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PO,PA.分别求出PD、DC,相加即可.解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.