6. AB都是 n阶方阵,若(A-B)^2=A^2 B^2 ,则必有( )
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 06:24:06
AB=0|AB|=0|A|*|B|=0|A|=0或|B|=0
n阶矩阵乘积的秩有不等式r(AB)≥r(A)+r(B)-nAB=0,即有r(AB)=0,代入即得.还有一种想法,B的列向量都是线性方程组AX=0的解.于是AX=0解空间的维数n-r(A)应该≥B的列秩
A可逆,A^(-1)ABA=BA,因此AB与BA相似
B的每个列向量都是齐次方程AX=0的解.当B为零矩阵时,AX=0只有零解,所以r(A)=n,B为零矩阵所以r(B)=0此时r(A)+r(B)=n当B为非零矩阵时,AX=0有非零解,所以r(A)
AB=0则r(A)+r(B)=1故r(A)
只要证明(ATA-1AB)T(ATA-1AB)=单位阵就行用转置的性质(AB)T=BTAT和ATT=A的到(ATA-1AB)T=BTATA-1TA,用它乘上ATA-1AB用条件A,B都是n阶正交阵所以
用反证法.若R(A)=N,则A可逆.A^(-1)[AB]=A^(-1)*0=0,又A^(-1)[AB]=B,因此,B=0.与B不等于0矛盾.故,R(A)
因为A可逆,所以A^(-1)ABA=BA所以AB与BA相似.
因为B≠O(矩阵),所以存在B的一列b≠0(列向量)因为AB=0,所以Ab=0即齐次线性方程组AX=0存在非零解,所以R(A)
因为[A^(-1)]*AB*A=BA,所以AB与BA相似.注:A^(-1)指的是A的逆矩阵.
证明:由于矩阵A可逆,因此A-1存在,故A-1(AB)A=(A-1A)BA=BA,故AB与BA相似
AB*(AB)^(-1)=EAB^(-1)=B^(-1)A^(-1)AB*(AB)^(-1)=AB*B^(-1)*A^(-1)=A[B*B^(-1)]A^(-1)=E故:B*B^(-1)不等于0B*B
假设R(A)=N那么A为满秩矩阵,那么A可逆,A*A的逆矩阵*B=0,所以B=0,与条件矛盾.所以R(A)〈N
因为AB=0,所以B的每一列都是线性方程组AX=0的解.而根据线性方程组理论,AX=0的基础解系中线性无关的解的个数(或者说解空间的维数)≤n-r(A).而B的列向量组是解空间的一部分,所以B的列向量
因为AB=0,则B的列向量都是齐次线性方程组AX=0的解.(知识点)又因为B不等于0,所以B至少有一列是非零列向量,这个列向量是AX=0的解.即AX=0有非零解,故A的行列式等于0.(知识点,A为方阵
因为B行列式不为零,所以B=k*Q1Q2...Qt(Qi为初等矩阵,对应A的初等列变换)由于矩阵经过初等列变换不改变秩,故A经每步初等列变换秩序不变,故r(AB)=r(A)不懂追问
因为AB=0所以B的列向量都是AX=0的解又因为B≠0,所以AX=0有非零解.所以r(A)
A是正交矩阵的充分必要条件是A'A=EAA'=EA^(-1)=A'.由A,B是正交矩阵,所以A'A=E,B'B=E,等等.所以有[A^(-1)]'A^(-1)=(A')'A'=AA'=E,所以A^(-
我只说简单的步骤,你可以自己试着推一下.(1)n阶方阵可以化成上三角阵和一些初等矩阵的乘积.(2)证明初等矩阵的乘积的行列式等于他们各自行列式的乘积.(3)证明上三角阵和上三角阵的乘积的行列式等于他们
不一定成立举反例就行了