如图在正方形ABCD中,点D,H分别在BC,AB上,若AD垂直于DH

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 07:53:44
如图在正方形ABCD中,点D,H分别在BC,AB上,若AD垂直于DH
如图,在正方形ABCD中,对角线

证明:∵四边形ABCD是正方形∴OD=OC,OD⊥OC∴∠COF=∠BOE=90°又∵OE=OF∴△COF≌△BOE(SAS)∴CF=BE

如图在正方形ABCD中,AB=12,点E是DC上的动点,(E不与点D、C重合),AE的垂直平分线FP分别交AD、AE、B

1)过点G作GQ⊥AD于Q,则QG=AB=AD=12,∠FQG=∠D=90°∵∠QFG+∠DAE=∠AED+∠DAE=90°,∴∠QFG=∠AED∴△QFG≌△AED∴FG=EA,FQ=DE=m∵FP

如图,正方形纸片ABCD和正方形EFGH的边长都是1,点E是正方形ABCD的中心,在正方形EFGH绕着点E旋转的过程中,

(1)两个正方形重叠部分的面积保持不变;(2)重叠部分面积不变,总是等于正方形面积的14,即14×1×1=14,连接BE,CE,∵四边形ABCD和四边形EFGH都是正方形,∴EB=EC,∠EBM=∠E

如图,在正方形ABCD中,点E是CD边上一动点(点E不与端点C、D重合)AE的垂直平分线FP交AD于F,交CB于G,交A

如图,∵∠DAE+∠EAB=∠P+∠EAB=90°,∴∠DAE=∠P,又∵各个垂直,∴图中所有直角三角形相似.(1)设AD=6,∵DE=1/3DC=1/3AD=2,∴AE=2根号10,AH=根号10,

如图,在正方形ABCD中,点E、F分别在AB、BC上,且AE=BF,AF与DE相交于点G.从给的条件中,你能求出AF⊥D

因为三角形ABF全等于三角形DAE(AE=BF,AD=AB,角DAE=角ABF)所以角AED=角BFA又因角BAF+角BFA=90度所以角BAF+角AED=90度所以角EGA=90度即AF⊥DE

求证明 已知,如图,正方形ABCD中,点E是BA延长线上一点,连接DE,点F在

连接BD因为DF=DC,DG⊥CF,所以由勾股定理FG=GC,因此三角形DFG与DCG全等所以<FDG=<CDG=<CDF/2=(<CDA+<ADF)/2=(90+<

图在下面1正△ABC和正方形DEFG如图放置点E,F在BC上点D,D分别在边AB,AC上求BC比EF2在提醒ABCD中A

第一题,角BDE等于30度,可知当BE为1时,DE等于“根号3”..BE=FC=1,EF=DE=“根号3”第二题,相似三角形“角角角原理”,可推知DK垂直于CK再问:第一题为什么BE为1再答:假设法

已知:如图,在正方形ABCD中,对角线AC,BD相交于点O

因为AC,BD为正方形ABCD的对角线则AC⊥BDAO=CO角BAC=45º因为EG⊥AC三角形AEG为等腰直角三角形AG=EG因为EF⊥BD所以EFOG为矩形EF=OG因此EG+EF=OG

数学、、急死个人了!如图,在平面直角坐标系中,O为坐标原点,四边形ABCD为正方形,点B(-40,0),D(0,40),

(1)设F点坐标为(0,y),则OF=y,EF=√(DE^2+DF^2)=√(20^2+(40-y)^2),根据OF=EF,有y=√(20^2+(40-y)^2),得80y=2000,即y=25,所以

如图,正方形ABCD的边长为4,△ABE是等边三角形,点E在正方形ABCD中,在对角线AC上存有一点P

不清楚追问,清楚了希采纳再问:看不懂求过程再答:∵ABCD是正方形∴AC垂直平分BD∴当点P在AC上时,都有BP=DP∵当点B,P,E不在同一直线时,BP+PE>BE,当B,P,E在同一直线时,BP+

如图,在正方形ABCD中,对角线的长为2,动点P沿对角线BD从点B开始向D运动

在直角△BDC中,BC=DC,BD=2,由勾股定理得:BC=√2,过点P作BC的垂线,垂足为E,得等腰直角△BPE,那么PE=(√2/2)x,所以S△PBC=1/2BC*PE=1/2*√2*√2/2*

如图,在正方形ABCD中,对角线的长为2,动点P沿对角线BD从点B开始向点D运动,到达点D后停止运动.

由P点做垂直于BD的直线,并交BC于E点,则PE为△PBC的高h.由三角形面积公式可知:S△PBC=1/2*BC*h=S;可推出h=2S/BC;------------------------1又易知

如图,在正方形ABCD中,E是AD的中点,点F在DC上

设AB=4.则BE=√20,EF=√5,BF=5.BE²+EF²=BF²∴∠BEF=90º.BE⊥EF.无量寿佛,佛说苦海无涯回头是岸!施主,我看你骨骼清奇,器

如图正方形ABCD中,AB=根号2,点F为正方形ABCD外一点,点E在BF上,且四边形AEFC为菱形

延长AB,过F作FG⊥AB延长线于G∵正方形ABCD,AB=√2∴AD=BC=CD=AB=√2∴AC=√2×√2=2∵菱形AEFC∴AF=AC=2,BF∥AC∴∠FBG=∠CAB=45∵FG⊥AB∴B

如图,在六面体ABCD-A1B1C1D1中,四边形ABCD是边长为2的正方形,四边形A'B'C'D'是边长为1的正方形,

 如图,⑴  E.F是CD,DA的中点,A1D⊥D1D  FD⊥D1D A1D,FD共面,∴A1D∥=FDA1D1DF是矩形,A1F∥=D1

如图,在正方形ABCD中,作出关于点B的中心对称图形,并写出做法.

连A/C/D-B并延长,取A'/C'/D'-B=A/C/D-B,连接A'BC'D再问:过程?再答:中心对称就是绕B转180度,把每个顶点转180度就是和B连,做延长线,让B是中点

如图,在正方形ABCD中.

(1)在正方形ABCD中,AD=DC,AE=DF,∠EAD=∠FDC,所以△EAD≌△FDC,故DE=CF,∴∠EDA=∠FCD,又∵∠DCF+∠DFC=90°,∴∠ADE+∠DFC=90°,∴∠DG