如图在等腰三角形abc的腰 上取一点d在另一腰ac

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:04:28
如图在等腰三角形abc的腰 上取一点d在另一腰ac
如图,在等腰三角形ABC中,AB=AC,D是底边BC上任意一点,DE垂直AC,DF垂直AB,BM是腰上的高,你能判断BM

BM=DE+DF理由如下设∠ABC=∠ACB=α由三角函数可得DF=BDsinαDE=DCsinαDF+DE=sinα(BD+DC)=BCsinα∵BM为AC边上的高∴∠BMC=90°∴BCsinα=

如图4,在等腰三角形ABC中,AB=AC,一腰上的中线CD将周长分成6和15两部分,请你求出这个三角形的三边长

设腰的长度为2X,则AB=2X,AD=X,CD=X;则①AB+AD=2X+X=6,X=2;CD+BC=X+BC=2+BC=15,BC=13所以,腰为4,底为13.三角形不存在.②AB+AD=2X+X=

如图,等腰三角形ABC中,AB=AC,一腰上的中线BD将这个等腰三角形周长分成15和6两部分,求这个三角形的腰长及底边长

设AB=AC=2X,BC=Y,则AD=CD=X,∵AC上的中线BD将这个三角形的周长分成15和6两部分,∴有两种情况:①当3X=15,且X+Y=6,解得X=5,Y=1,∴三边长分别为10,10,1;②

1.如图,在等腰三角形ABC中,底边BC上有任意一点P,则点P到两腰的距离之和等于定长(腰上的高),

连AP,用面积法.若点P在BC的延长线上,则PD-PE=CF若△ABC为等边三角形,P为△ABC内任一点,则P到三边的距离和依然为定长=高证明:连PA,PB,PC,面积法

如图,在等腰三角形ABC中,AB=AC,一腰上的中线BD将这个等腰三角形的周长分为18 30

根据题意可得AB+AD=18BC+DC=30或AB+AD=30BC+DC=18∵D是AC的中点AB=AC∴AD=DC=1/2AB∴由AB+AD=18BC+DC=30得AB=12BC=24不合题意,故舍

在等腰三角形ABC中,AB=AC=2a,∠B=15°,求腰上的高

过C作CD垂直BA,交BA的延长线于D;∠CAD=∠C+∠B=15°+15°=30°,CD=AC/2=2a/2=a.

如图,等腰三角形ABC中,AB=AC,一腰上的中线BD将这个等腰三角形周长分成15和6两个部分,求这个三角形腰长底

设腰的长度为2X,则AB=2X,AD=X,CD=X;则①AB+AD=2X+X=6,X=2;CD+BC=X+BC=2+BC=15,BC=13所以,腰为4,底为13.三角形不存在.②AB+AD=2X+X=

如图 等腰三角形abc,AB=AC,腰上高线为CD,求证∠BCD=1/2∠BAC

证明:过点A作AE⊥BC于E∵AB=AC,AE⊥BC∴∠BAE=∠CAE=1/2∠BAC(三线合一),∠BAE+∠B=90∵CD⊥AB∴∠BCD+∠B=90∴∠BCD=∠BAE∴∠BCD=1/2∠BA

如图,在等腰三角形abc中,ab=ac一腰上的中线bd将这个等腰三角形的周长分成15和6两部分,求这个三角形的腰长及底边

设△ABC中,AB=AC=2X, 因为BD是中线, 易知AD=CD=X, 所以AB+AD=3X, 根据题意得: 3X=15或3X=6 解得X

如图,在等腰三角形ABC中,BE,CF是两腰上的高,点P,Q分别在BE,CF的延长线上,且BP=AC,CQ=AB.说明△

∵AB⊥CQ  AC⊥BP∴∠BFC=∠CEB=90°  ∠3=∠4(对顶角相等)∴∠1=∠2∴△ABP≌△ACQ(SAS)∴AQ=AP(全等三角形对应边相等)

如图,在等腰三角形abc中,be,cf是两腰上的高,点p,q分别在be,cf的延长线上.且bp=ac,cq=ab.说明△

是个等腰直角三角形!现在我帮你证明下!很容易证明三角形BFC=三角形BEC,所以∠FCB=∠EBC.,因为CQ=AB=AC=BP,所以BP=CQ,BC=BC所以三角形BCQ=三角形BCP,所以BQ=C

如图,在等腰三角形ABC中,BE,CF是两腰上的高线,

△APQ是等腰三角形∵△ABC为等腰三角形∴AB=AC,∠ABC=∠ACB∵CE,BF是高∴∠BEC=∠CFB=90º在△BEC和△CFB中∠ABC=∠ACB∠BEC=∠CFB=90

如图,BD,CE是等腰三角形ABC两腰上的高,问BD与CE相等吗?请说明理由

答;相等;理由如下;因为三角形ABC是等腰三角形所以AB=AC,角ABC=角ACB在三角形BDC与三角形CEB中因为EB=CD,角AEC=90度=角ADB,角ABC=角ACB所以三角形BDC全等三角形

如图,等腰三角形ABC中,AB=AC,CD为腰上的高线,已知∠BCD=22°,求∠A的度数.

解:因为CD为腰上的高所以角BDC=90°所以在直角三角形DBC中角B=180°-90°-22°=68°因为等腰三角形ABC中,AB=AC所以角ACB=角B=68°所以 在三角形ABC中 角A=180

如图,在等腰三角形ABC中,AB=AC,一腰上的中线BD将这个等腰三角形的周长分成15和6,两部分,求这个等腰

设腰的长度为2X,则AB=2X,AD=X,CD=x那么①AB+AD=2X+X=6,X=2;CD+BC=X+BC=2+BC=15,BC=13所以,腰为4,底为13.三角形不存在.②AB+AD=2X+X=

证明:等腰三角形两腰上的高线相等.已知,如图,在△ABC中,AB=AC,BE,CD是△ABC的高线.求证:BD=CE

因为CD、BE分别是等腰三角形ABC的高线所以CD⊥AB,BE⊥AC所以△ADC和△AEB是直角三角形而∠DAC=∠EAB(公共角)AB=AC(已知)所以RT△ABE全等于RT△ACD(AAS)所以B

如图,BD,CE是等腰三角形ABC两腰上的高.问BD与CE相等吗?请说明理由.

∵△ABC是等腰三角形∴AB=AC,∠ABC=∠ACB在△BDC与△CEB中∵∠AEC=90度=∠ADB,∠ABC=∠ACBEB=CD,∴△BDC全等△CEB(AAS)∴BD=CE(.理由自己写.)

如图,BD,CE是等腰三角形ABC两腰上的高.求证:BE=CD

证明:∵AB=AC∴∠ABC=∠ACB∵CE⊥AB,BD⊥AC∴∠BEC=∠BDC∵BC=BC∴⊿BEC≌⊿BDC∴BE=CD【证毕】再问:xiexie..再答:请采纳谢谢