如图已知点P为角ABC内一点利用

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 05:54:51
如图已知点P为角ABC内一点利用
如图,在边长为2的正三角形ABC中,已知点P是三角形内任意一点,则点P到三角形的三边距离之和PD+PE+PF=_____

连接AP、BP、CP,设等边三角形的高为h,如图:∵正三角形ABC边长为2∴h=22−12=3∵S△BPC=12BC•PDS△APC=12AC•PES△APB=12AB•PF∴S△ABC=12BC•P

已知,如图,点P是三角形ABC内一点,连接PB,PC,请比较角BPC与角A的大小?并说明理由

角A+∠ABC+∠ACB=180∠P+∠PBC+∠PCB=180又∠ABC>∠PBC∠ACB>∠PCB所以∠A<∠P

如图,在△ABC中,∠BAC=120°,点P为△ABC内的一点.

因为三角形ABP旋转60度以后得到三角形QDB所以角ABQ=60度,角ABP=角QDB,BP=BD,PA=QD因为角BAC=120度所以角QAB=60度又因为角ABQ=60度所以三角形ABQ是等边三角

如图,已知△abc是正三角形,p为三角形内一点,且PA=3

可把三角形ABC内的三个三角形分别沿AC,BC,AB折叠,得到对应点P,P2,P3,得到一个六边形,三角形ABC的面积为六边形面积的1/2,然后再连接P1P2P3得到四个特殊的四边形,此题答案也就出来

如图,在三角形ABC中,AC=BC>AB,点P为三角形ABC所在平面内一点,且点P与三角形ABC的

选C如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,

如图,已知点D为等腰直角三角形ABC内一点,角CAD等于角CBD等于15℃

图呢再问:再答:证:∵△ABC为等腰直角三角形,∠CAD=∠CBD=15°∴AC=BC,∠BAD=∠ABD=45°-15°=30°∴DA=DB,∠ADB=120°,又DC=DC∴△ACD∽△BCD∴∠

如图,已知点D为等腰直角三角形ABC内一点,角cAD=角CBD=15°,E为AD延长线上的一点…

证:∵△ABC为等腰直角三角形,∠CAD=∠CBD=15°∴AC=BC,∠BAD=∠ABD=45°-15°=30°∴DA=DB,∠ADB=120°,又DC=DC∴△ACD∽△BCD∴∠ACD=∠BCD

如图,已知点P为正方形ABCD内一点,连结PA、PB、PC.

1、(1)扫过区域是个以a为半径,圆心角为90度的扇形,所以面积是πa^2/4.(2)由已知,P'B=PB=4,P'C=2,且∠PBP'=90,所以∠PP'B=45,PP'=4√2;又因为∠BP'C=

已知点P是等腰直角三角形ABC内的一点,连接PA,PB,PC,如图,若P在斜边AC上,

已知ABC是等腰直角三角形,AC是斜边设AB=BC=a因为角A=角C=45度,cos45度=√2所以,PB^2=BC^2+PC^2-√2*a*PCPB^2=AB^2+PA^2-√2*a*PA于是2*P

如图,已知P是三角形ABC内任意一点,求证:角BPC>角A

证明:∠BPC=180°-(∠PBC+∠PCB);∠A=180°-(∠ABC+∠ACB);∵∠PBC+∠PCB180°-(∠ABC+∠ACB);即∠BPC>∠A.

如图,已知等边△ABC的髙为2013,P为△ABC内任意一点,PD垂直AB于D点,PE垂直于E点,试求PD+PE+PF的

AM=PD+PE+PF证明:S△ABC=BC*AM/2等边三角形中三边相等S△ABC=PD*BC/2+PE*AC/2+PF*AB/2=(PD+PE+PF)*BC/2∴BC*AM/2=(PD+PE+PF

如图,点P为等边三角形ABC内一点,且PC:PB:PA=3:4:5.求角BPC的度数.

将△BPC绕B点逆时针旋转60°,得△BDC',因为∠ABC=60°,所以C'与A重合则有△BPC≌△BDA,∠BPC=∠BDA可知△BEP为等边△,故∠BDP=60°PD=BP=4,而PA=5,AD

如图,点O是等边三角形ABC内一点,已知角AOB=115°,角BOC=125°,以点B为旋转中心

旋转之后有两个隐藏已知:△ABO与△CBO1全等,∠OBO1=60°所以△BOO1为等边三角形,∠BO1O=∠BOO1=60°∠CO1O=∠BO1C-∠BO1O=∠AOB-∠BO1O=55°∠COO1

如图,已知点O为△ABC内一点,连接BO,CO,试证BOC>角A

延长BO交AC于点D,则有:∠BOC=∠BDC+∠OCD,∠BDC=∠A+∠ABD,所以,∠BOC>∠BDC>∠A.

如图,已知P是等边△ABC内任意一点,过点P分别向三边作垂线,垂足分别为D,E,F.求证:PD+PE+PF是不变的值

因为没图,设D,E,F分别在AB,BC,CA上,连接PA,PB,PC则△ABC被分为3个小三角形,△PAB,△PBC,△PCA△ABC的面积=△PAB的面积+△PBC的面积+△PCA的面积设△ABC的

如图,已知△ABC中,∠BAC=120°,P为△ABC内一点.

把△APC绕A逆时针旋转60°得到△AP′C′,如图∴∠CAC′=∠PAP′=60°,AC=AC′,AP=AP′,PC=P′C′,∴△APP′为等边三角形,∴PP′=AP,∵∠BAC=120°,∴∠B

如图,D为等边三角形ABC内一点且BD=AD过点B作BP=AB角1=角2则角P的度数

∵等边三角形ABC,∴AB=BC=AC,∵∠1=∠2,BP=BA=BC,BD=BD,∴△DPB≌△DBC,∴∠BCD=∠P,DP=DC,又∵AD=BD,BP=BA=AC,∴△DBP≌△ADC,∴∠AC