如图惦记是三角形ABC的重心连接a进兵营长焦dc于点d过点g过

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:33:50
如图惦记是三角形ABC的重心连接a进兵营长焦dc于点d过点g过
三角形的重心定理是?

三角形重心定理  三角形的三条边的中线交于一点.该点叫做三角形的重心.三中线交于一点可用燕尾定理证明,十分简单.(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交

如图,已知G为三角形ABC的重心,三角形ABC的三边长满足AB>BC>CA,若三角形GAB三角形G

是S1=S2=S3.由于重心是中线的三等分点,可得S1,S2,S3都是△ABC面积的三分之一.详细一点:延长CG交AB于点D,由于CD:GD=3:1所以△CAB与△GAB高线之比为3:1,具有同底AB

如图,点O是三角形ABC的重心,请问三角形AOB,三角形BOC,三角形AOC的面积有什么关系?说明理由

S△AOB=S△BOC=S△AOC,理由如下:分别延长AO、BO、CO,交BC、AC、AB于D、E、F,∵O是△ABC的重心,∴AD、BE、CF是△ABC的中线,∴S△ABD=S△ABE=1/2S△A

如图 若G是三角形ABC的重心,GD∥BC 则三角形ADG与三角形ABC的面积比为

因为G是重心又因为AE平分BC所以AG:GE=2:3因为GD∥EC所以AG:AE=GD:EC=AD:AC=2;3所以三角形AGD和aec相似所以AGD和AEC面积比为4:9因为E是中点所以aec:ab

如图,F是三角形ABC的重心,EF//AB,S三角形ABC=36,则S四边形ADFE=

因F是△ABC的重心,则:1、点D是边AB的中点,从而有:△ACD与△BCD的面积相等,所以三角形ADC的面积是18;2、且:CF:CD=2:3,:△BCF的面积是△ADC面积的4/9,则△BCF的面

如图,P是三角形ABC所在平面外的一点,D,E,F分别是三角形PBC,PAC,PAB的重心,证:面DEF//ABC

利用重心到顶点的距离与重心到对边中点的距离之比为2:1可以证明.连接PD交于BC于G,连接PE交AC于H,连接GH那么在三角形PGH中,PD/DG=2:1;PE/EH=2:1;即PD/PG=PE/PH

如图,G是三角形ABC的重心,延长AD,使DH=GD,K为BG的中点

连接BH由题意知,D是BC、GH的中点,故四边形BGCH是平行四边形.(对角线互相平分的四边形是平行四边形)那么,BG//HC所以∠FGC=∠GCH又因为点F、K分别是AB、BG的中点所以FK//AG

如图,A是三角形BCD所在平面外一点,M,N分别是三角形ABC和三角形ACD的重心. 求证MN//BD;若BD=6,求M

A是△BCD所在平面外一点,M、N分别是△ABC和△ACD的重心,若BD=6,则MN多少? 如图:PQ为△BCD的中位线--->PQ∥BD且PQ=BD/2=3 AM:AP=A

如图,在三角形ABC中,DF经过三角形ABC的重心G,且DF//AB,DE//AC,连接EF,如果BC=5,AC=根号2

由G是△ABC的重心,DF过点G,且DF‖AB,可得CD/CB=2/3.∴DF=2/3AB.由DE‖AC,CD/CB=2/3,得DE=1/3AC.∵AC=根号2AB,∴AC/AB=根号2,DF/DE=

(初三数学)已知如图,点p是三角形abc的重心,过点p作ac的平分线,分别交ab,bc与点

连接BP并延长交AC于G由重心性质得,BP:PG=2:1因为DE//AC所以BD:DA=BP:PG=2:1所以BD:BA=2:3,AD:AB=1:3因为DE//AC,DF//BC所以△BDE∽△BAC

如图,在三棱锥A-BCD中,M,N分别是三角形ABC和三角形ACD的重心,求证MN与平面BCD平行.

延长AM交BC于P,延长AN交CD于Q,连接PQ重心嘛所以有AM/MP=2AN/QN=2所以MN平行于PQPQ又在平面BCD上所以MN平行于平面BCD咯纯手打求给分~

如图,在三角形ABC中,BD、CE分别是边AC、AB上的中线,点M是三角形BEC重心,点N是三角形BCD重心,则MN:B

如图,连接ED.由题可知,ED是△ABC的中位线∴ED=1/2BC          .①∵M,N为

如图,若点G是三角形ABC的重心,GD平行于BC.(1)求AD比AC(2)求GD比BC

延长AG交BC于点E.  因为 G是三角形ABC的重心,  所以 AE是三角形ABC中BC边上的中线,     AG:AE=2:3,  因为 GD//BC,  所以 三角形AGD相似于三角形AEC, 

如图,点G是三角形ABC的重心且AD垂直BE已知BC=3 AC=4求AB的长

AG^2+EG^2=AE^2=2^2=4BG^2+DG^2=BD^2=1.5^2=2.25根据三角形重心的性质,有AG=2DG,BG=2EG,代入上面两个式子,得4DG^2+EG^2=44EG^2+D

已知,如图,点G是三角形ABC的重心,GE平行于AB,GF平行于AC.

因为G是重心所以AD平分BC所以BD=DC因为GE//AB,所以角ABD=角GED又角ADB=角GDE所以三角形ADB相似三角形GDE所以|GD|/|AD|=|ED|/|BD|同理|GD|/|AD|=

如图,在三角形ABC中,角C=90度,点G是三角形ABC的重心,且AG垂直CG(1)求证三角形CAG相似三角形ABC (

重心是三条中线的交点延长CG交AB于E,因为G是三角形ABC的重心,所以CE为斜边AB上的中线,所以CE=AE=BE所以角BAC=角ACE因为角ACB=角AGC=90度所以三角形CGA相似于三角形AB

如图:已知G为三角形ABC的重心,求证AG=2GF

重心的性质及证明方法  1、重心到顶点的距离与重心到对边中点的距离之比为2:1.   三角形ABC,E、F是AB,AC的中点.EC、FB交于G.   过E作EH平行BF.