如图惦记是三角形ABC的重心连接a进兵营长焦dc于点d过点g过
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:33:50
三角形重心定理 三角形的三条边的中线交于一点.该点叫做三角形的重心.三中线交于一点可用燕尾定理证明,十分简单.(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交
1/3(a+b+c)
是S1=S2=S3.由于重心是中线的三等分点,可得S1,S2,S3都是△ABC面积的三分之一.详细一点:延长CG交AB于点D,由于CD:GD=3:1所以△CAB与△GAB高线之比为3:1,具有同底AB
S△AOB=S△BOC=S△AOC,理由如下:分别延长AO、BO、CO,交BC、AC、AB于D、E、F,∵O是△ABC的重心,∴AD、BE、CF是△ABC的中线,∴S△ABD=S△ABE=1/2S△A
因为G是重心又因为AE平分BC所以AG:GE=2:3因为GD∥EC所以AG:AE=GD:EC=AD:AC=2;3所以三角形AGD和aec相似所以AGD和AEC面积比为4:9因为E是中点所以aec:ab
因F是△ABC的重心,则:1、点D是边AB的中点,从而有:△ACD与△BCD的面积相等,所以三角形ADC的面积是18;2、且:CF:CD=2:3,:△BCF的面积是△ADC面积的4/9,则△BCF的面
给分吧,算好了面积是2/9S△ABC
利用重心到顶点的距离与重心到对边中点的距离之比为2:1可以证明.连接PD交于BC于G,连接PE交AC于H,连接GH那么在三角形PGH中,PD/DG=2:1;PE/EH=2:1;即PD/PG=PE/PH
连接BH由题意知,D是BC、GH的中点,故四边形BGCH是平行四边形.(对角线互相平分的四边形是平行四边形)那么,BG//HC所以∠FGC=∠GCH又因为点F、K分别是AB、BG的中点所以FK//AG
A是△BCD所在平面外一点,M、N分别是△ABC和△ACD的重心,若BD=6,则MN多少? 如图:PQ为△BCD的中位线--->PQ∥BD且PQ=BD/2=3 AM:AP=A
由G是△ABC的重心,DF过点G,且DF‖AB,可得CD/CB=2/3.∴DF=2/3AB.由DE‖AC,CD/CB=2/3,得DE=1/3AC.∵AC=根号2AB,∴AC/AB=根号2,DF/DE=
连接BP并延长交AC于G由重心性质得,BP:PG=2:1因为DE//AC所以BD:DA=BP:PG=2:1所以BD:BA=2:3,AD:AB=1:3因为DE//AC,DF//BC所以△BDE∽△BAC
延长AM交BC于P,延长AN交CD于Q,连接PQ重心嘛所以有AM/MP=2AN/QN=2所以MN平行于PQPQ又在平面BCD上所以MN平行于平面BCD咯纯手打求给分~
如图,连接ED.由题可知,ED是△ABC的中位线∴ED=1/2BC .①∵M,N为
延长AG交BC于点E. 因为 G是三角形ABC的重心, 所以 AE是三角形ABC中BC边上的中线, AG:AE=2:3, 因为 GD//BC, 所以 三角形AGD相似于三角形AEC,
AG^2+EG^2=AE^2=2^2=4BG^2+DG^2=BD^2=1.5^2=2.25根据三角形重心的性质,有AG=2DG,BG=2EG,代入上面两个式子,得4DG^2+EG^2=44EG^2+D
因为G是重心所以AD平分BC所以BD=DC因为GE//AB,所以角ABD=角GED又角ADB=角GDE所以三角形ADB相似三角形GDE所以|GD|/|AD|=|ED|/|BD|同理|GD|/|AD|=
重心是三条中线的交点延长CG交AB于E,因为G是三角形ABC的重心,所以CE为斜边AB上的中线,所以CE=AE=BE所以角BAC=角ACE因为角ACB=角AGC=90度所以三角形CGA相似于三角形AB
重心的性质及证明方法 1、重心到顶点的距离与重心到对边中点的距离之比为2:1. 三角形ABC,E、F是AB,AC的中点.EC、FB交于G. 过E作EH平行BF.