如图所示 在四面体abcd中 棱cd=根号2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 23:03:02
推荐一个好方法空间向量虽然看样子你们一定没学.建立坐标系就可以了空间坐标系然后利用向量只需证明CE向量平行于面adf的法向量就可以了.再问:⋯再答:��֪���ˡ���֤��AD����D
在AC上取一点H,使得AH:HC=1:2,则:在三角形ABC中,BF:FC=AH:HC=1:2,则:HF//AB同理,在三角形ACD中,可得:EH//CD,则:∠EHF所成角就是异面直线AB与CD所成
在四面体内过顶点A作AO⊥底面交底面于O,连结BO、CO、DO并延长,BO交CD于M,CO交BD于N,DO交BC于Q因为AB⊥CD,BO是AB在平面BCD内的射影,所以BM⊥CD同理CN⊥BD,所以O
1.证明:∵AB⊥CD,BC⊥CD,∴CD⊥平面ABC∴平面ACD垂直于平面ABC2.∵BC=CD,BC⊥CD∴二面角C-AB-D=∠CBD=45°
1、AB⊥CD,AC⊥BD,所以面ABC⊥面BCD,所以AC⊥BC2、连接CB',则CB'为A'C在面BB’C‘C上的投影,因为是正方体,所以面BB’C‘C是正方形,所以CB'⊥BC',所以A'C⊥B
两个面垂直在ABC三角形中作出BE垂直于AC于E则有BE垂直于平面ACDBE=2分之根号3三角形面积ACD=4分之根号15再用体积公式算为8分之根号5要是计算不对见谅我都是口算的跟前没有笔但是算法对着
证明:因为截面过内接球球心,则VA-EFC=(1/3)(S△AEC+S△AFC+S△EFC)rVA-BEFD=(1/3)(S◇BDEF+S△ADF+S△ABE+S△ABD)r∵VA-EFC=VA-BE
作AO⊥平面BCD垂足为O连接BO交DC于M连接CO交BD于N由三垂线定理BM⊥DCCN⊥BDO为△BCD的垂心连接DO则DO⊥BC由三垂线定理BC⊥AD
过B作BE⊥CD交CD于E,过C作CF⊥BD交BD于F,令BE∩CF=O.∵CD⊥AB、CD⊥BE,AB∩BE=B,∴CD⊥平面ABE,又AO在平面ABE内,∴AO⊥CD.∵BD⊥AC、BD⊥CF,A
做AO垂直与底面BCD,所以AO垂直于BC,因为有BC垂直与AD,所以BC垂直于平面AOD,所以DO垂直于BC,同理可证BO垂直与CD,那么O就是底面三角形的垂心所以CO垂直与BD,又AO垂直与BD,
如图所求三棱锥的体积为:正方体的体积减去4个正三棱锥的体积即1-4×13×12×1×1×1=13.故答案为:13.
证明:过A作AO⊥平面BCD于H∴AH⊥CD∵AB⊥CD∴CD⊥平面ABH∴CD⊥BH同理BC⊥AH∴H为△BCD垂心∴CH⊥BD(1)又AH⊥平面BCD∴AH⊥BD(2)由(1)(2)BD⊥平面AC
作DE垂直于AC并交于E.因AB⊥BC,则DE⊥ABC,为四面体的高.且,AC=2,BC=1,有AB=3^(1/2),S(ABC)=3^(1/2)/2(1)在三角形ACD中,AD=2,DC=1,AC=
1)由已知得:CP*CR=6CQ*CR=6CP*CQ=8所以(CP*CQ*CR)²=288CP*CQ*CR=12√2CP=2√2,CQ=2√2,CR=3√2/2V四面体C-PQR=[(CP*
(Ⅰ)证明:∵CD⊥AB,CD⊥BC,∴CD⊥平面ABC.(2分)又∵CD⊂平面ACD,∴平面ACD⊥平面ABC.(4分)(Ⅱ)∵AB⊥BC,AB⊥CD,∴AB⊥平面BCD∴AB⊥BD.∴∠CBD是二
以顶点A、C、B1、D1为顶点的正四面体的表面积为43,所以一个侧面的面积为:3,正四面体的棱长为:a,由34a2=3,解得a=2,正四面体的棱长就是正方体的面对角线,所以正方体的棱长为:x,2x2=
在BD上取一点H,使得DH=2HB则:AE:ED=BH:HD=1:2BH:HD=BF:FC=2:1则:EH//AB、HF//CD得:∠EHF就是异面直线AB与CD所成角或其补角.在三角形EFH中,EF
作DE垂直于AC并交于E.因AB⊥BC,则DE⊥ABC,为四面体的高.且,AC=2,BC=1,有AB=3^(1/2),S(ABC)=3^(1/2)/2(1)在三角形ACD中,AD=2,DC=1,AC=
证明:∵截面EFGH平行于棱AB,∴FG∥AB,EH∥AB,∴FG∥EH,同理:EF∥GH,∴四边形EFGH是平行四边形.