如图所示,AB是圆O的直径OD垂直于弦BC于点F,且
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 01:14:42
(1)∵AD⊥BC,∴CD=BD,∴CE=BE,∵CO=BO,∴△OCE≌△OEB,∴∠OBE=∴BE与圆O相切.(2)连接BC,AB是直径,∠ACB=90°.sin∠ABC=
先吐槽一下==图好难看做法是连接AC和OC证明:因为角ACB所对的线段AB为圆的直径所以角ACB为90°因为弧AD=弧CD所以角AOD=角COD同时易知AC与OD垂直易知角ACO+角COD=90°角A
证明:连接OC∵AC‖OD∴∠A=∠BOD,∠C=∠COD∵OA=OC∴∠A=∠C∴∠COD=∠BOD∴弧CD=弧BD
拜托啦,很急……今晚就要!详细过程哦!AB是圆O的直径,BC是圆O的弦,OD垂直CB,垂足为E,交弧BC于点D,连接AC,CD,DB设角CDB=α,角ABC=β,试找出α与β之间的一种关系式并给予证明
(1)如图:①BE=CE,②弧CD=弧BD,③AC∥OD,④∠A=∠DOB, (2)∵OD⊥BC,∴弧BC=2弧CD∵弧AC+弧BC=180°,∴弧AC+2弧CD=180°,∴2∠ABC+4
1、结论:1)AC∥OD∵直径AB∴∠ACB=90∵OD⊥CB∴∠OEB=90∴AC∥OD2)弧BD=弧CD∵OD⊥CB,OC=OB∴∠COD=∠BOD∴弧BD=弧CD2、设半径为R∵OD⊥CB∴CE
(1)OD平分BC;角ACB=90°(2)设半径为RCE=4,OC=R,OE=R-2由勾股定理CE^2+OE^2=OC^216+(R-2)^2=R^2R=5所以半径为5
2、CE=EB=4,OE=R-ED=R-2OB^2=OE^2+EB^2R^2=(R-2)^2+4^2R=5
OD‖BC →△AOD∽△ABC →OD/BC=AO/AB=1:2 &nb
1、∵直径AB∴∠ACB=90∵AB=12,BC=6∴AC=√(AB²-BC²)=√(144-36)=6√3∵OD⊥AC∴AD=AC/2=3√32、∵半圆面积S=π×(AB/2)&
如图:连接OC∠OAC=∠OCA∵OD‖BD∴∠OCA=∠COD∠OAC=∠BOD∴∠COD=∠BOD∴弧CD=弧BD(在同圆中,相等的圆心角所对的弧相等)
证明:连接OC∵AC‖OD∴∠A=∠BOD,∠C=∠COD∵OA=OC∴∠A=∠C∴∠COD=∠BOD∴弧CD=弧BD(2)连接OC∵弧CD=弧BD∴∠COD=∠BOD∵OA=OC∴∠A=∠C∵∠CO
∵OE⊥BC∴E为BC中点∴BE=CE=4设半径为r则OD=rOE=OD-ED=r-2在三角形OBE中有OB²=BE²+OE²即r²=4²+(r-2)
证明:连接OC,∵OD∥AC,∴∠BOD=∠A,∠COD=∠C,∵OA=OC,∴∠A=∠C,∴∠COD=∠BOD,∴CD=BD.
BC⊥AC,AC∥OD,CE=BE,弧CD=弧BD,角A=角BOD
:(1)求证:CD=BD,证明:∵AC∥OD,∴∠1=∠2.∵OA=OD,∴∠2=∠3.∴∠1=∠3.所以狐等∴CD=BD
平行设od垂直平分bc于eoa=obeb=ec所以平行
(1)∵AD⊥BC,∴CD=BD,∴CE=BE,∵CO=BO,∴△OCE≌△OEB,∴∠OBE=∴BE与圆O相切.(2)连接BC,AB是直径,∠ACB=90°.sin∠ABC=2/3AB=2OB=2*
是不是上图的样子? 证明过程如下“连结A.C 因AD是切线 ∠DAO=90° ∠ACB是直径所对的圆周角也是90°