如图所示,一平面简谐波在t=0时的波形图,则O点的振动方程为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:46:08
如图所示,一平面简谐波在t=0时的波形图,则O点的振动方程为
一平面简谐波,波速u=5,t=3s时波形曲线如图.则x=0处质点的振动方程为?

由图可知波长为20,振幅是0.02,由于波速是5,故周期是4s,故角频率是2π/4=π/2,由于t=3s时x=0在负向位移最大处,且此波沿x轴正向传播,故可知t=0时x=0处质点在原点处且沿y轴正向运

一振幅为0.24m、频率为50Hz的平面简谐波以速度100m/s沿x轴正向传播.当t=0时,

x=0.24cos(wt+ψ)当t=0时,x=-0.12∴0.24cosψ=-0.12cosψ=-0.5ψ=(2π)/3或(4π)/3所以初相位为(2π)/3或(4π)/3

一平面简谐波沿x轴正方向传播,t=0时刻波形曲线如图 所示,则坐标原点O处质点的振动速度v与时间t的关 系曲

DX=0处的位移随时间的变化是C图明白吗?然后对位移求导即得速度与t的关系再问:能把式子列出来吗?听不太懂再答:恩,第一步明白吗?就像上面那个人说的那X=0处x=-A*Sint对t求导X‘=-A*Co

一平面简谐波以波速 u = 200 m · s-1 沿 x 轴正方向传播,在 t = 0 时刻的波形如图所示.

分析:从图示可知,O点在t=0时y=0,过一段极小时间后,y>0,所以可知O点的振动方程是y=A*sin(ωt)周期 T=入/u=4/200=0.02秒ω=2π/T=2π/0.02=100π弧度/秒即

一列简谐波在t=0时的波形图如图所示,波的传播速度是2m/s,从t=0到t=2.5s的时间内,

周期0.2s,2.5s包含12.5个周期,1个周期内该点路程0.2m;2.5s后该点仍然处于原位,因此路程2.5m,位移0m再问:老师对这一类的问题还不大懂,周期是=波长/波速=0.4/2=0.2s是

一平面简谐波沿x轴正向传播,在坐标原点处质元的振动表达式为 y=4.0×10^-2cos ( πt-(π/2) ) 在t

1、在t=1/2时刻,y=4.0×10^-2cos(πt-(π/2))=y=4.0×10^-2cos0º=4.0×10^-2m,该点处于最大位移处,速度为0.2、周期T=2s①若A在前B在后

机械振动问题.一平面简谐波,其振幅为A,频率为v.波沿x轴正方向传播.设t=t0时刻波形如图所示.则x=0处质点的振动方

根据微移法(由于波向右传播,将波形向右移动一小段距离,可以看到O点向下移动)或者“阴盛阳衰准则”(将波传播方向的箭头看做阳光照射的方向,波峰的两个面有一个面是正对阳光的,称为阳面,另一个背对的称为阴面

一平面简谐波沿X轴正向向一反射面入射,如图所示.入射波的振幅为A,周期为T,波长为λ,t=0时刻,在原点O处的质元由平衡

1),∵t=0时质元由平衡位置向正方向移动,∴设波函数为:f(x,t)=Asin[(2π/T)t-(2π/λ)x+φ],其中f(x,t)表示x处质点在t时刻的位移.只需确定初项φ,∵v=ðf/

一平面简谐波以速度u沿x轴正方向传播,在t = t'时波形曲线如图所示.则坐标原点O的振动方程为

由图,此时原点处于平衡位置向上运动,也就是相位为-π/2.又波长为2b,即ω=2πf=2πu/2b=πu/b综上选D再问:还是没明白,初相位怎么弄出来的啊·求详解。再答:初相位可以通过旋转矢量法,或者

平面简谐波的方程.书上说的,设坐标原点的简谐运动为y(0,t)=Acosωt对于振幅无衰减的简谐波,若其传播方向与+x方

波由原点传播到+x点所用时间为t'=x/v+x点在t时刻的振动情况(相位)与原点在(t-t')时刻的振动情况(相位)相同,故y(x,t)=y(0,t-t')=Acosw(t-t')=Acosw(t-x

一平面简谐波的波动方程为y=cos(4πt-x*π/2-π/2)(m),则原点处的质点在t=1s时的速度和加速度怎么求

求振动方程,二次对T求导,代入T再问:没听懂呵呵不是只有振动方程才二次求导吗?这个波动方程怎么转换为振动方程啊?再答:设振动方程的标准式,由波动方程可得点,代入可解振动方程..........

如图所示为一平面简谐波在t=2s时的波形图,振幅为0.2m,周期为4s,则P点的振动方程为

该质点的位移表示为:x=Asin(ωt+φ)=Asin(2π/T+φ)∵在这里,A=0.2m;T=4s;φ=0.∴x=0.2sin(2π/4)=0.2sin(π/2)

大学物理 平面简谐波一平面简谐波y=5cos(8t+3x+π/4)沿0x轴传播,式中,t以s计,x、y以m计,问:1、它

一平面简谐波沿0x轴传播==〉公式方向沿x轴正方向(波的方向可能变,看公式中的符号)原式可化为:y=5cos(8*(t+3x/8)+π/4)对比波的标准表达式ψ=Acos(w(t-x/u)+φ)w=2

一平面简谐波在t=0时刻的波形图求(1)该波的波动方程(2)P处质点的运动方程

波长为0.4m;振幅为0.04m,v=λff=v/λ=0.08/0.4=0.2HzT=1/f=5s角频率ω=2πf=0.4π,初相位为-πy=0.04sin(0.4πt-π)或者初相位为πy=0.04

下图为一简谐波在t=0时刻的波形图,介质中的质点P做简谐运动的表达式为y=Asin5πt

假设时间由t=0经过Δt(Δt很小)后,即t=Δt对质点P,y=Asin5πt=y=Asin5πΔt其中,由于Δt很小且为正值,sin5πΔt>0,所以y的正负与A相同当A>0时,y>0,说明P在t=