如图所示,已知圆o的弦ab,cd互相垂直
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:06:42
解析:(1)连接OC,由AD=13BD知,点D为AO的中点,又∵AB为圆的直径,∴AC⊥BC,∵3AC=BC,∴∠CAB=60°,∴△ACO为等边三角形,∴CD⊥AO.∵点P在圆O所在平面上的正投影为
证明:因为AB、CD是圆O的直径,所以∠AOC=∠EOBAO=BOCO=EO△AOC≌△EOB所以AC=EB连接OD因为CD是圆O的弦,所以OD是圆O的半径因为CD∥AB所以OC=ODAO=BO∠AO
∵点C为弧AB的中点,CD是圆O的直径\x0d∴CD垂直AB\x0d∴角CEB+角FCD=90度\x0d∵CD是圆O的直径\x0d∴角CFD=90度\x0d∵角FDC+角FCD=90度\x0d∴角CE
设直线CD交小圆于M、交圆O于N.因为AB为圆O的直径,C为圆O上的一点,CD垂直于AB于D所以CD=DNCD²=AD*BDCD=6CD=DN=CM=6由相交玄定理得PE×EQ=ME×DE=
1、∵直径AB∴∠ACB=90∵AB=12,BC=6∴AC=√(AB²-BC²)=√(144-36)=6√3∵OD⊥AC∴AD=AC/2=3√32、∵半圆面积S=π×(AB/2)&
∵圆O的直径是8cm,点C是弧AB的中点∴OC⊥AB∴∠APC=90º-∠OCP∵圆O的直径是8cm,∴OC=OD=4cm∵CD=4根号3cm∴cos∠OCP=(OC²+CD
再答:�Լ����������£�˼·��������
(1)连接DE,因为OA=OD=OE,三角形内角和关系,∠ADE=90°,则DE平行BC,∠EDB=∠CBD=∠A,所以∠ODB=90°,所以是相切关系.(2)设AD长为8a,则AO=5a,AE=10
证明:连接OC∵OB=OC∴∠OBC=∠OCB∵PO∥BC∴∠AOP=∠OBC,∠COP=∠OCB∴∠AOP=∠COP∵PO=PO,OC=OA∴△OAP≌△OCP∴∠OAP=∠OCP∵是切线切线,AB
连结OC、OA,∵AB切小圆与C,∴OC⊥AB,∴AC=AB/2=5,∴OA²-OC²=AC²=25,∴S圆环=S大圆-S小圆=OA²π-OC²π=(
1、在三角形OAB中,有:∠OAB=∠OBA,又:OA=OB,AC=BD,则三角形OAC与三角形OBD全等,从而有:∠OCA=∠ODB,即:∠OCD=∠ODC2、过圆心O作OH垂直AB于H,则由垂径定
(1)∵OD⊥AB,∴∠OCA=90°,在Rt△OAC中,由勾股定理得:AC=OA2−OC2=52−32=4,∵OD⊥AB,OD过O,∴AB=2AC=8.(2)∵OD⊥AB,OD过O,∴弧AD=弧BD
证明:【D应为AP的中点】连接AC则∠ACB=90º【直径所对的圆周角是直角】∴∠PCA=90º∵D是AP的中点【根据直角三角形斜边中线等于斜边的一半】∴CD=AD=DP∴∠DAC
设OC交AB于D∵C为弧AB的中点∴OD⊥ABOD=1设半径OB=OC=x则在Rt△BOD与Rt△CDB中BD²=BC²-CD²BD²=BO²-OD&
^2-(AB/2)^2=r^2-9r^2-(CD/2)^2=r^2-16根号(r^2-9)-根号(r^2-16)=1解得r=5
显然有:OA=OB,∴∠OAC=∠OBD.∵弧AE=弧BF,∴∠AOC=∠BOD.由∠AOC=∠BOD、∠OAC=∠OBD、OA=OB,得:△OAC≌△OBD,∴AC=BD.
第一题:∵AB是直径,C是圆上一点,那么∠ACB是直角.又∵BC=√3AC∴∠ABC=30∴∠BAC=60AC=1/2AB=2又∵AD=1/4=1∴∠ACD=30因此可以推出∠ADC=180-∠BAC
发图你哈再答:再问:OD=1/2AB???再答:都是圆半径再问:帮我普及一下梯形关系,是两腰的中点连线等于上低加下底的一半吗?再答:嗯再答:中位线再问:怎么证明EC=DF?我只能证明圆里面的垂直平分.
作OQ⊥AB,连DO并延长MC于P,连接OA则AQ=BQ=AB/2因为MC⊥AB,ND⊥AB所以MC//ND//OQ所以∠M=∠N又因为∠POM=∠DON,OM=ON所以△MOP≌△NOD所以MP=N